Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pink Pig
Xem chi tiết
Minh Hồng
14 tháng 4 2022 lúc 14:58

a) Khi \(m=1\) ta có phương trình \(x^2-3x+1=0\)

\(\Delta=3^2-4=5\)

Phương trình có 2 nghiệm phân biệt \(x_1=\dfrac{3-\sqrt{5}}{2};x_2=\dfrac{3+\sqrt{5}}{2}\)

b) Xét phương trình \(x^2-3x+m=0\left(1\right)\)

\(\Delta=9-4m\)

PT có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow9-4m>0\Leftrightarrow m< \dfrac{9}{4}\)

Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)

Để \(x_1^2+x_2^2=2021\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2021\)

\(\Leftrightarrow3^2-2m=2021\Leftrightarrow2m=-2012\Leftrightarrow m=-1006\) (TM)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 12 2017 lúc 9:22

MiMi -chan
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 6 2023 lúc 11:01

1B

2A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2017 lúc 12:06

Đáp án A

Phương pháp: Chia cả 2 vế cho 3x, đặt tìm điều kiện của t.

Đưa về bất phương trình dạng 

Cách giải :

Ta có 

Đặt khi đó phương trình trở thành

Ta có: 

Vậy 

Huỳnh Thị Thanh Trâm
Xem chi tiết
Nhi Tuyết
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 11:37

3(x+2) + x1, xlà sao bạn? 

Hoàng Nam vlog
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 4 2023 lúc 23:37

Δ=(2m-2)^2-4(2m-5)

=4m^2-8m+4-8m+20

=4m^2-16m+24

=4m^2-16m+16+8=(2m-4)^2+8>=8>0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

\(B=\dfrac{x_1^2}{x^2_2}+\dfrac{x_2^2}{x_1^2}\)

\(=\dfrac{x_1^4+x_2^4}{\left(x_1\cdot x_2\right)^2}=\dfrac{\left(x_1^2+x_2^2\right)^2-2\left(x_1\cdot x_2\right)^2}{\left(x_1\cdot x_2\right)^2}\)

\(=\dfrac{\left[\left(2m-2\right)^2-2\left(2m-5\right)\right]^2-2\left(2m-5\right)^2}{\left(2m-5\right)^2}\)

\(=\dfrac{\left(4m^2-8m+4-4m+10\right)^2}{\left(2m-5\right)^2}-2\)

\(=\left(\dfrac{4m^2-12m+14}{2m-5}\right)^2-2\)

\(=\left(\dfrac{4m^2-10m-2m+5+9}{2m-5}\right)^2-2\)

\(=\left(2m-1+\dfrac{9}{2m-5}\right)^2-2\)

Để B nguyên thì \(2m-5\in\left\{1;-1;3;-3;9;-9\right\}\)

=>\(m\in\left\{3;2;4;1;7\right\}\)

Trần Công Thanh Tài
Xem chi tiết
Thanh Hoàng Thanh
14 tháng 3 2022 lúc 19:57

undefinedundefined

Tên Của Tôi
Xem chi tiết
Nguyễn Ngọc Lộc
5 tháng 2 2021 lúc 16:10

- Đặt \(a=x^2-2x\left(a\ge-1\right)\)

PTTT \(3\sqrt{a+3}=a+m\left(a\ge-m\right)\)

\(\Leftrightarrow9\left(a+3\right)=\left(a+m\right)^2=a^2+2am+m^2=9a+27\)

\(\Leftrightarrow a^2+a\left(2m-9\right)+m^2-27=0\)

Có : \(\Delta=\left(2m-9\right)^2-4\left(m^2-27\right)=4m^2-36m+81-4m^2+108\)

\(=-36m+189\)

- Để phương trình đề có 2 nghiệm phân biệt :

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(a_1+1\right)\left(a_2+1\right)>0\\a_1+1+a_2+1>0\end{matrix}\right.\)

Lại có : Theo vi ét : \(\left\{{}\begin{matrix}a_1+a_2=-2m+9\\a_1a_2=m^2-27\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\a_1a_2+a_1+a_2+1>0\\a_1+a_2+2>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-36m+189>0\\m^2-27-2m+9+1=m^2-2m-17>0\\-2m+9+2=-2m+11>0\end{matrix}\right.\)

\(\Rightarrow m=\left(-\infty;1-3\sqrt{2}\right)\cup\left(1+3\sqrt{2};\dfrac{21}{4}\right)\) ( * )

- Có : \(x^2-2x=a\)

- Đặt \(f\left(x\right)=x^2-2x\)

- Ta có đồ thị \(x^2-2x=0\)

- Từ độ thị hàm số : Để phương trình \(x^2-2x=a\) có 2 nghiệm phân biệt trong đoạn 0, 3 thì \(a=(-1;0]\)

Lại có : \(a=[-m;+\infty)\)

\(\Rightarrow-m\le0\)

\(\Rightarrow m\ge0\)

- Kết hợp với ( * )

\(\Rightarrow m\in\left(1+3\sqrt{2};\dfrac{21}{4}\right)\)

Vậy ...