Trong mặt phẳng tọa độ Oxy, cho đường tròn ( C 2 ) : x 2 + y 2 - 12 x + 18 = 0 và đường thẳng d:x-y+4. Phương trình đường tròn có tâm thuộc ( C 2 ), tiếp xúc với d và cắt ( C 1 ) tại hai điểm phân biệt A và B sao cho AB vuông góc với d là
Trong mặt phẳng tọa độ Oxy, cho đường tròn C có phương trình : x^2 + y^2 - 12x - 4y + 36 = 0. Viết phương trình đường tròn C1 tiếp xúc với hai trục tọa độ Ox, Oy đồng thời tiếp xúc với C.
Trong mặt phẳng tọa độ Oxy, cho đường tròn ( C ) : ( x - 3 ) 2 + ( y - 1 ) 2 = 10 . Phương trình tiếp tuyến của (C) tại A(4;4) là
A. x - 3 y + 5 = 0
B. x + 3 y - 4 = 0
C. x - 3 y + 16 = 0
D. x + 3 y - 16 = 0
Trong mặt phẳng tọa độ oxy, cho đường tròn C phương trình là : C x^2 + y^2 =1. đường tròn C' tâm I(2,2) cắt C tại A,B sao cho AB = √2. viết phương trình đường thẳng AB.
Đường tròn (C) tâm O(0;0) bán kính R=1
Phương trình đường thẳng IO có dạng: \(y=x\)
Do A;B là giao điểm của 2 đường tròn \(\Rightarrow AB\perp IO\)
Gọi H là trung điểm AB \(\Rightarrow H\in OI\) ; \(AH=\dfrac{AB}{2}=\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow OH=\sqrt{OA^2-AH^2}=\sqrt{1-\dfrac{1}{2}}=\dfrac{\sqrt{2}}{2}\)
Do H thuộc OI nên tọa độ có dạng: \(H\left(x;x\right)\Rightarrow OH=\sqrt{x^2+x^2}=\sqrt{2x^2}\)
\(\Rightarrow\sqrt{2x^2}=\dfrac{\sqrt{2}}{2}\Rightarrow x=\pm\dfrac{1}{2}\) \(\Rightarrow\left[{}\begin{matrix}H\left(\dfrac{1}{2};\dfrac{1}{2}\right)\\H\left(-\dfrac{1}{2};-\dfrac{1}{2}\right)\end{matrix}\right.\)
Đường thẳng AB qua H và vuông góc OI nên nhận \(\left(1;1\right)\) là 1 vtpt có dạng:
\(\left[{}\begin{matrix}1\left(x-\dfrac{1}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\\1\left(x+\dfrac{1}{2}\right)+1\left(y+\dfrac{1}{2}\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x+y+1=0\end{matrix}\right.\)
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): ( x + 1 ) 2 + ( y - 3 ) 2 = 4 . Phép tịnh tiến theo vectơ v → = 3 ; 2 biến đường tròn (C) thành đường tròn có phương trình nào dưới đây
A. ( x + 2 ) 2 + ( y + 5 ) 2 = 4
B. ( x - 1 ) 2 + ( y + 3 ) 2 = 4
C. ( x + 4 ) 2 + ( y - 1 ) 2 = 4
D. ( x - 2 ) 2 + ( y - 5 ) 2 = 4
trong mặt phẳng tọa độ Oxy cho đường tròn (C): (x-1)^2+(y-1)^2 =25 và các điểm A(7;9), B(0;8). Tìm tọa độ điểm M thuộc (C) sao cho P=Ma+2MB đạt giá trị nhỏ nhất
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có phương trình x - 1 2 + y - 2 2 = 4 Hỏi phép vị tự tâm O tỉ số -2 biến đường tròn (C) thành đường tròn nào sau đây
A. x - 4 2 + y - 2 2 = 4
B. x - 4 2 + y - 2 2 = 16
C. x + 2 2 + y + 4 2 = 16
D. x - 2 2 + y - 4 2 = 16
trong mặt phẳng Oxy, cho hai đường tròn (C) : \(\left(x-1\right)^2+\left(y-1\right)^2=1\). Lập phương trình đường tròn (C') tiếp xúc với 2 trục tọa độ và tiếp xúc ngoài với (C)
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) X^2 + Y^2 -4x+6y-3=0 viết phương trình tiếp tuyến với đường tròn (C) biết rằng tiếp tuyến song song với đường thẳng (d) 4x-3y+22=0
(d')//(d)
=>(d'): 4x-3y+c=0
(C): x^2-4x+4+y^2+6y+9-16=0
=>(x-2)^2+(y+3)^2=16
=>R=4; I(2;-3)
Theo đề, ta có: d(I;(d'))=4
=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)
=>|c+17|=4*5=20
=>c=3 hoặc c=-37
trong mặt phẳng tọa độ Oxy, hãy tìm ảnh của đường tròn (C') qua phép quay tâm O, góc quay 90 độ
(C): (x-2)^2 + (y-1)^2 = 1