Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn [-10;10] để bất phương trình log 3 2 x 2 + x + m + 1 x 2 + x + 1 ≥ 2 x 2 + 4 x + 5 - 2 m có nghiệm. Số phần tử của tập hợp S bằng
A. 20
B. 10
C. 15
D. 5
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn [−5; 10] để phương trình m + 1 x = 3 m 2 - 1 x + m - 1 có nghiệm duy nhất. Tổng các phần tử trong S bằng:
A. 15
B. 39
C. 17
D. 40
Phương trình viết lại m + 1 x = 3 m 2 - 1 x = 1 - m
Phương trình đã cho có nghiệm duy nhất khi 3 m 2 - m - 2 ≠ 0 ⇔ m ≠ 1 m ≠ − 2 3
Do m ∈ Z và m ∈ [−5; 10] ⇒ m ∈ {−5; −4; −3; −2; −1; 0; 2; 3; 4; 5; 6; 7; 8; 9; 10}.
Do đó, tổng các phần tử trong S bằng 39.
Đáp án cần chọn là: B
Cho hàm số y = x 3 - 3 x 2 + m , với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số có 5 điểm cực trị. Tổng tất cả các phần tử của tập S là
A. 3
B. 10
C. 6
D. 5
Đáp án C
Đồ thị hàm số đã cho có 5 điểm cực trị khi và chỉ khi phương trình y’ = 0 có 5 nghiệm phân biệt và y’ đổi dấu qua 5 nghiệm đó, điều này tương đương với x 3 - 3 x 2 + m có ba nghiệm phân biệt khác 0 và 2
Cho hàm số y = x 3 - 3 x 2 + m , với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số có 5 điểm cực trị. Tổng tất cả các phần tử của tập S là
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số y = 1 4 x 4 - 19 2 x 2 + 30 x + m - 20 trên đoạn [0;2] không vượt quá 20. Tổng các phần tử của S bằng:
A. 210
B. 105
C. -195
D. 300
Đáp án B
Xét hàm số f x = 1 4 x 4 - 19 2 x 2 + 30 x + m - 20 trên [0;2] có f ' x = 0 ⇔ x = 2
Tính f 0 = m - 20 ; f 2 = m + 6 → m a x 0 ; 2 y = m a x [ 0 ; 2 ] f x = m - 20 ; m + 6
TH1. Với m a x 0 ; 2 y = m - 20 ⇒ m - 20 ≥ m + 6 m - 20 ≤ 20 ⇔ m ≤ 7 - 20 ≤ m ≤ 20 ⇔ 0 ≤ m ≤ 7
TH2. Với m a x 0 ; 2 y = m + 6 ⇒ m - 20 ≤ m + 6 m + 6 ≤ 20 ⇔ m ≥ 7 - 20 ≤ m + 6 ≤ 20 ⇔ 7 ≤ m ≤ 14
Kết hợp với m ∈ ℤ , ta được m = 0 ; 1 ; 2 ; . . . ; 14 → ∑ m = 105 .
Cho hàm số y = f x có đồ thị như hình bên dưới
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m ∈ - 100 ; 100 để hàm số h x = f 2 x + 2 + 4 f x + 2 + 3 m có đúng 3 điểm cực trị. Tổng giá trị của tất cả các phần tử thuộc S bằng
Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho phương trình 2 sin x + 1 sin x + 2 = m có đúng hai nghiệm thuộc đoạn 0 ; π . Khi đó S là
A. một khoảng
B. một đoạn
C. một nửa khoảng
D. một tập hợp có hai phần tử
Đáp án C.
Đặt t = sin x , t ∈ − 1 ; 1 . Phương trình đã cho trở thành 2 t + 1 t + 2 = m (*).
Để phương trình đã cho có đúng hai nghiệm thuộc đoạn 0 ; π thì phương trình (*) phải có đúng một nghiệm thuộc nửa khoảng 0 ; 1 .
Xét hàm số f t = 2 t + 1 t + 2 . Ta có f ' t = 3 t + 2 2 .
Bảng biến thiên của :
Vậy để phương trình (*) có đúng một nghiệm thuộc nửa khoảng 0 ; 1 thì m ∈ 1 2 ; 1 . Vậy C là đáp án đúng
Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho phương trình 2 sin x + 1 sin x + 2 =m có đúng hai nghiệm thuộc đoạn 0 ; π . Khi đó S là
A. một khoảng
B. một đoạn
C. một nửa khoảng
D. một tập hợp có hai phần tử
cho biểu thức f(x,y)= \(x^2+2y^2-2xy+2mx+2y+25\) ( m là tham số). Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để f(x,y) \(\ge\) 0 với x, y thuộc R. tính tổng tất cả các phần tử của S
\(\Leftrightarrow\left(x-y+m\right)^2+y^2+2\left(m+1\right)y-m^2+25\ge0\); \(\forall x;y\)
\(\Leftrightarrow y^2+2\left(m+1\right)y-m^2+25\ge0\) ;\(\forall y\)
\(\Leftrightarrow\Delta'=\left(m+1\right)^2-\left(-m^2+25\right)\le0\)
\(\Leftrightarrow m^2+m-12\le0\Rightarrow-4\le m\le3\)
Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số y = 1 5 m 2 x 5 − 1 3 m x 3 + 10 x 2 − m 2 − m − 20 x đồng biến trên ℝ . Tổng giá trị của tất cả các phần tử thuộc S bằng
A. 5 2 .
B. 3 2 .
C. - 2
D. 1 2 .