Biết rằng S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = x 3 - 3(m-1) x 2 + 3m(m+2)x nghịch biến trên đoạn [0;1]. Tính tổng các phần tử của S?
A. S = 0.
B. S = 1.
C. S = -2.
D. S = -1.
Cho hàm số y = 1 3 x 3 + 2 x 2 + ( m + 2 ) x - m . Tìm tập hợp S tất cả các giá trị thực của tham số m để hàm số đồng biến trên ℝ
A. S = ( - ∞ ; 2 ]
B. S = ( - ∞ ; 2 )
C. S = [ 2 ; + ∞ )
D. S = ( 2 ; + ∞ )
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = - x - 1 3 + 3 m 2 x - 1 - 2 có hai điểm cực trị cách đều gốc tọa độ. Tổng các giá trị tuyệt đối của tất cả các phần tử thuộc S là
A. 4.
B. 2/3
C. 1.
D. 5.
Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 - 1 + m x 2 - 1 - 6 x - 1 ≥ 0 đúng với mọi x ∈ ℝ . Tổng giá trị của tất cả các phần tử thuộc S bằng
A. 3 2 .
B. 1.
C. - 1 2 .
D. 1 2 .
Hình vẽ bên là đồ thị của hàm số y=f(x). Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y = f x − 1 + m có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng
A. 12
B. 15
C. 18
D. 9
Hình vẽ bên là đồ thị của hàm số y = f(x). Gọi S là tập hợp các số nguyên dương của tham số m để hàm số y = |f(x – 1) + m| có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng:
A. 12
B. 15
C. 18
D. 9
Gọi S là tập hợp các giá trị của tham số m để giá trị lớn nhất của hàm số y = x 2 − m x + 2 x − 2 trên đoạn [-1;1] bằng 3. Tính tổng tất cả các phần tử của S.
A. − 8 3
B. 5
C. 5 3
D. -1
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đường thẳng d: y=-x+m cắt đồ thị hàm số y = - 2 x + 1 x + 1 tại hai điểm phân biệt A, B sao cho A B ≤ 2 2 . Tổng giá trị tất cả các phần tử của S bằng
A. -6
B. 0
C. 9
D. -27