Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 - 1 + m x 2 - 1 - 6 x - 1 ≥ 0 đúng với mọi xÎ ℝ . Tổng giá trị của tất cả các phần tử thuộc S bằng
A. - 3 2
B. 1
C. - 1 2
D. 1 2
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 ≥ 1 + m x 2 ≥ 1 ≥ 6 x ≥ 1 - 0 đúng với mọi x ∈ R . Tổng giá trị của tất cả các phân tử thuộc S bằng
A. - 3 2
B. 1
C. - 1 2
D. 1 2
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3
Gọi S là tập tất cả các giá trị thực của tham số m để bất phương trình
x 6 + 3 x 4 − m 3 x 3 + 4 x 2 − m x + 2 ≥ 0 có nghiệm với mọi x ∈ ℝ . Biết rằng S = a ; b , a , b ∈ ℝ . Tính P = 2 b − 3 a
A. P = 5
B. P = 10
C. P = 15
D. P = 0
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = - x - 1 3 + 3 m 2 x - 1 - 2 có hai điểm cực trị cách đều gốc tọa độ. Tổng các giá trị tuyệt đối của tất cả các phần tử thuộc S là
A. 4.
B. 2/3
C. 1.
D. 5.
Cho phương trình 2 - m 3 - 3 m 2 + 1 . log 81 x 3 - 3 x 2 + 1 + 2 + 2 - x 3 - 3 x 2 + 1 - 2 . log 3 1 m 3 - 3 m 2 + 1 + 2 = 0 . Gọi S là tập hợp tất cả các giá trị m nguyên để phương trình đã cho có số nghiệm thuộc đoạn 6 ; 8 . Tính tổng bình phương tất cả các phần tử của tập S.
A. 20
B. 28
C. 14
D. 10
Cho phương trình (m+1)sinx+m cosx=2m-1 với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để phương trình có nghiệm. Tính tổng tất cả các phần tử của S.
A.-2.
B. 6.
C.2.
D. -6
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3
Gọi S là tập hợp các giá trị thực của tham số m sao cho phương trình ( x + 1 ) 3 + 3 - m = 3 3 x + m 3 có đúng nghiệm thực. Tích tất cả các phần tử của tập hợp S là
A. -1
B. 1
C. 3
D. 5