Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
23 tháng 6 2017 lúc 14:01

Đường tròn

Đường tròn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2019 lúc 17:15

a. b.

c. - Đường tròn (O’; 1cm) có đường kính là: EF; Các dây cung là: EA, EB, AB, FA, FB

Vì E thuộc (O’; 1cm) nên EO’=1cm; EF=2.EO’=2cm

- Đường tròn (O; 1,5cm) có đường kính là: DC; Các dây cung là: DA, DB, AB, AC, CB

Vì C thuộc (O; 1,5cm) nên CO=1,5cm; DC=2.CO=3cm

d. Vì đường tròn (O’; 1cm) cắt đoạn thẳng OO’ tại E, nên E nằm giữa 2 điểm O và O’.

Ta có: O E + E O ' = O O ' ⇒ O E = 1 c m  

Mà EO’=1cm, nên OE=EO’ (=1cm)

Do đó: E là trung điểm của đợn thẳng OO’.

e. Vì đường tròn (O; 1cm) cắt đường thẳng OO’ tại D, đường tròn (O’; 1cm) cắt đường thẳng OO’ tại F, nên 4 điểm D, O, O’, F lần lượt theo thứ tự đó và DO=1,5cm; O’F=1cm.

Ta có: D F = D O + O O ' + O ' F = 1 , 5 + 2 + 1 = 4 , 5 c m .

Vậy DF=4,5cm

Cầm Dương
Xem chi tiết
illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 21:57

Xét tứ giác ACDB có A,C,D,B cùng nằm trên (O)

nên ACDB là tứ giác nội tiếp

=>\(\widehat{CAB}+\widehat{CDB}=180^0\)

mà \(\widehat{CAB}+\widehat{MAC}=180^0\)(hai góc kề bù)

nên \(\widehat{MAC}=\widehat{CDB}=\widehat{MDB}\)

Xét tứ giác AEFB có A,E,F,B cùng nằm trên (O')

nên AEFB là tứ giác nội tiếp

=>\(\widehat{BAE}+\widehat{BFE}=180^0\)

mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)

nên \(\widehat{MAE}=\widehat{MFB}\)

Xét ΔMCA và ΔMBD có

\(\widehat{MAC}=\widehat{MDB}\)

\(\widehat{M}\) chung

Do đó: ΔMCA đồng dạng với ΔMBD

=>\(\dfrac{MC}{MB}=\dfrac{MA}{MD}\)

=>\(MC\cdot MD=MA\cdot MB\)(1)

Xét ΔMAE và ΔMFB có

\(\widehat{MAE}=\widehat{MFB}\)

\(\widehat{M}\) chung

Do đó: ΔMAE đồng dạng với ΔMFB

=>\(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)

=>\(MA\cdot MB=MF\cdot ME\left(2\right)\)

Từ (1) và (2) suy ra \(MC\cdot MD=ME\cdot MF\)

=>\(\dfrac{MC}{MF}=\dfrac{ME}{MD}\)

Xét ΔMCE và ΔMFD có

\(\dfrac{MC}{MF}=\dfrac{ME}{MD}\)

\(\widehat{CME}\) chung

Do đó: ΔMCE đồng dạng với ΔMFD

=>\(\widehat{MCE}=\widehat{MFD}\)

mà \(\widehat{MCE}+\widehat{DCE}=180^0\)(hai góc kề bù)

nên \(\widehat{MFD}+\widehat{DCE}=180^0\)

=>CDFE là tứ giác nội tiếp

Trang Lại
Xem chi tiết
Duyên Lê
Xem chi tiết
Như Ý Nguyễn Lê
Xem chi tiết
Cô Hoàng Huyền
10 tháng 10 2017 lúc 16:38

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng i: Đoạn thẳng [F, A] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [A, E] Đoạn thẳng m: Đoạn thẳng [E, M] Đoạn thẳng n: Đoạn thẳng [D, F] Đoạn thẳng p: Đoạn thẳng [G, B] Đoạn thẳng q: Đoạn thẳng [E, C] O = (2.08, 1.84) O = (2.08, 1.84) O = (2.08, 1.84) A = (12.48, 2.58) A = (12.48, 2.58) A = (12.48, 2.58) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm E: Giao điểm đường của c, g Điểm E: Giao điểm đường của c, g Điểm E: Giao điểm đường của c, g Điểm F: Giao điểm đường của c, h Điểm F: Giao điểm đường của c, h Điểm F: Giao điểm đường của c, h Điểm G: Giao điểm đường của c, i Điểm G: Giao điểm đường của c, i Điểm G: Giao điểm đường của c, i Điểm M: Giao điểm đường của f, j Điểm M: Giao điểm đường của f, j Điểm M: Giao điểm đường của f, j

a)  Do DF // AC nên \(\widehat{MAG}=\widehat{GFD}\)  (Hai góc so le trong) . 

Lại có \(\widehat{GFD}=\widehat{GED}\)   (Hai góc nội tiếp cùng chắn cung GD)

Nên \(\widehat{MAG}=\widehat{GED}\)

Xét tam giác AMG và tam giác EMA có:

\(\widehat{MAG}=\widehat{MEA}\) (cmt)

Góc M chung

Vậy nên \(\Delta AMG\sim\Delta EMA\left(g-g\right)\Rightarrow\frac{MA}{ME}=\frac{MG}{MA}\Rightarrow MA^2=MG.ME\) 

b) Do tứ giác ECBG nội tiếp nên \(\widehat{BCE}=\widehat{BGM}\) (Góc ngoài tại đỉnh đối của tứ giác nội tiếp)

Vậy xét tam giác MGB và MCE có:

\(\widehat{BGM}=\widehat{ECM}\left(cmt\right)\)

Góc M chung

Vậy nên \(\Delta MGB\sim\Delta MCE\left(g-g\right)\)

c) Theo câu a, ta có \(AM^2=MG.ME\)

Theo câu b, \(\Delta MGB\sim\Delta MCE\Rightarrow\frac{MG}{MC}=\frac{MB}{ME}\Rightarrow MG.ME=MB.MC\)

Vậy nên \(MA^2=MB.MC\)

Suy ra \(MA^2+MA.MC=MB.MC+MA.MC\)

\(\Leftrightarrow MA\left(MA+MC\right)=MC\left(MB+MA\right)\)

\(\Leftrightarrow MA.AC=MC.AB\)

\(\Leftrightarrow AB\left(AC-AM\right)=MA.AC\)

\(\Leftrightarrow AB.AC-AB.AM=AM.AC\)

\(\Leftrightarrow AB.AC=AM\left(AB+AC\right)\)

\(\Leftrightarrow\frac{1}{AM}=\frac{AB+AC}{AB.AC}\)

\(\Leftrightarrow\frac{1}{AM}=\frac{1}{AB}+\frac{1}{AC}\left(đpcm\right)\)

nguyen thi ky
10 tháng 12 2019 lúc 20:07

ko biet

Khách vãng lai đã xóa
Ngọc Anh
Xem chi tiết
dung vu
Xem chi tiết