Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạt Lê
Xem chi tiết
Nguyễn Thanh Hải
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 23:09

2: ΔABC vuông tại A nội tiếp (O)

=>O là trung điểm của BC

BC=căn 6^2+8^2=10cm

=>OB=OC=10/2=5cm

S=5^2*3,14=78,5cm2

....
Xem chi tiết
Dương An Hạ
Xem chi tiết
ngô minh ngọc
Xem chi tiết
Thuy Nguyen
24 tháng 5 2016 lúc 21:22

A B C I

trong tgiac vuông tâm đường tròn ngoại tiếp chính là trung điểm cạnh huyền

Áp dụng định lý pytago vào tgiac vuông ABC ta có :

\(BC^2\)=\(AC^2\)+\(AB^2\)

\(BC^2\)=\(8^2\)+\(6^2\)

\(BC^2\)=100

BC=10 

Vậy bán kính đường tròn ngoại tiếp tgiac ABC là:

10:2=5cm

Ngọc Mai
31 tháng 7 2016 lúc 23:15

bán kính đường tròn nội tiếp = 1 ok ;)

 

uzumaki naruto
Xem chi tiết
Nguyễn Tuấn
24 tháng 5 2016 lúc 19:59

Gọi bk ngoại tiếp là R còn nôi tiếp là r ;p là 1/2 chu vi (= a+b+c/2)

ra có R=BC/2=5

mà S=pr=(6+8+10)/2r=6*8/2=>r=2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 4 2019 lúc 14:26

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF cân tại B nên HE = HF

Tam giác AEF vuông tại A có AH là đường trung tuyến ứng với cạnh huyền nên: HA = HE = HF = (1/2).EF (tính chất tam giác vuông)

Vậy tam giác AHF cân tại H.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 10 2017 lúc 5:42

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là giao điểm của AD và BC

Vì BC là đường trung trực của AD nên theo tính chất đường trung trực ta có:

BA = BD

Tam giác BAD cân tại B có BI ⊥ AD nên BI là tia phân giác của góc ABD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF có BH là tia phân giác của góc EBF và BH ⊥ EF nên tam giác EBF cân tại B.

Cô Hoàng Huyền
Xem chi tiết
Bùi Thị Huyền Trang
27 tháng 11 2021 lúc 17:48

                                                                BÀI LÀM

a, xét tứ giác ADOE có:

góc A= góc E=góc D=90O

mà ta thấy: OE=OD( bán kính = nhau)

vậy tứ giác ADOE là hình vuông (dhnb)

 

 

Khách vãng lai đã xóa
Nguyễn Quốc Hưng
27 tháng 11 2021 lúc 18:17

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có SΔABC=SΔOAB+SΔOBC+SΔOAC
                     =12 OD.AB+12 OE.AC+12 OH.BC
                      =12 r.(AB+AC+BC)
                      =12 pr (p là  chu vi của tam giác ABCr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.rr=2(cm).

Khách vãng lai đã xóa
Đặng Thị Thu Thủy
27 tháng 11 2021 lúc 21:49
 giải:

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có S_{\Delta ABC}=S_{\Delta OAB}+S_{\Delta OBC}+S_{\Delta OAC}
                     =\dfrac{1}{2}OD.AB+\dfrac{1}{2}OE.AC+\dfrac{1}{2}OH.BC
                      =\dfrac{1}{2}r.\left(AB+AC+BC\right)
                      =\dfrac{1}{2}pr (p là  chu vi của tam giác ABCr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=\sqrt{AB^2+AC^2}=10\left(cm\right).
Diện tích tam giác ABC là: \dfrac{1}{2}AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right).
Chu vi tam giác ABC là: 6+8+10=24\left(cm\right).
Suy ra: 24=\dfrac{1}{2}.24.r\Leftrightarrow r=2\left(cm\right).

Khách vãng lai đã xóa