Cho hàm số y = f(x) có bảng biến thiên
Tìm m để phương trình f 2 2 x - 2 f 2 x - m - 1 = 0 có nghiệm trên - ∞ ; 1 .
Cho hàm số y = f (x) có bảng biến thiên như sau:
Tìm m để phương trình f (x) = 2 – 3m có bốn nghiệm phân biệt
A. m < - 1 h o ặ c m > - 1 3
B. - 1 < m < - 1 3
C. m = - 1 3
D. m ≤ - 1
Cho hàm số y=f(x) có bảng biến thiên như sau:
Tìm m để phương trình f(x)=2-3m có bốn nghiệm phân biệt
A. m< -1 hoặc m> -1/3
B. -1 < m < -1/3
C. m= -1/3
D. m ≤ - 1
Cho hàm số y = f(x) có bảng biến thiên như sau
Tìm tất cả các giá trị của tham số m để phương trình f(x) = 2m có nhiều nhất 2 nghiệm.
A. m ∈ − ∞ ; − 1 2 ∪ 0 ; + ∞
B. m ∈ 0 ; + ∞ ∪ − 1
C. m ∈ − ∞ ; − 1 ∪ 0 ; + ∞
D. m ∈ 0 ; + ∞ ∪ − 1 2
Đáp án A
Phương pháp giải:
Phương trình có nhiều nhất n nghiệm thì xảy ra các trường hợp có n nghiệm, có n – 1 nghiệm, … , vô nghiệm, dựa vào bảng biến thiên để biện luận số giao điểm của hai đồ thị hàm số
Lời giải:
Cho hàm số f(x) liên tục trên - ∞ ; + 2 và 2 ; + ∞ có bảng biến thiên dưới đây. Tìm m ∈ ℝ để phương trình f(x) = m có ba nghiệm phân biệt.
Cho hàm số y=f(x) có đạo hàm trên ℝ . Bảng biến thiên của hàm số y=f'(x) như hình dưới
Tìm m để bất phương trình m + 2 sin x ≤ f ( x ) nghiệm đúng với mọi x ∈ 0 ; + ∞ .
A. m < f(0) +1
B. m < f(1)
C. m < f(0)
D. m < f(0) -1
Đáp án C
Từ đó ta có bảng biến thiên của g(x):
Cho hàm số y=f(x) có đạo hàm trên ℝ . Bảng biến thiên của hàm số y=f'(x) như hình dưới
Tìm m để bất phương trình m + x 2 ≤ f ( x ) + 1 3 x 3 nghiệm đúng với mọi x ∈ 0 ; 3
A. m<f(0)
B. m ≤ f ( 0 ) .
C. m ≤ f ( 3 )
D. m< f ( 1 ) - 2 3
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên
Có bao nhiêu số nguyên dương m để phương trình f(2 sinx+1)=f(m) có nghiệm thực ?
A. 2.
B. 5.
C. 4.
D. 3.
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x)-1=m có đúng 2 nghiệm
A. -2 < m < -1
B. m > 0, m = -1
C. m = -2, m > -1
D. m = -2, m ≥ -1
Chọn đáp án C
Phương pháp
Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m song song với trục hoành.
Cách giải
Ta có:
Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m+1 song song với trục hoành.
Từ BBT ta thấy để phương trình f(x)-1=m có đúng 2 nghiệm thì
Cho hàm số y=f(x) xác định, liên tục trên ℝ và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x)-1=m có đúng 2 nghiệm.
A. -2<m<-1
B. m>0,m=-1
C. m=-2,m>-1
D. m=-2,m ≥ -1
Cho hàm số y= f(x) Hàm số y= f’(x) có bảng biến thiên như sau
Bất phương trình f ( x ) < 3 e x + 2 + m có nghiệm x ∈ ( - 2 ; 2 ) khi và chỉ khi
A.
B.
C.
D.