Cho hàm số y = f(x) có bảng biến thiên như sau:
Tìm tất cả giá trị thực của tham số m để phương trình f(x) - m - 0 có bốn nghiệm phân biệt.
Cho hàm số y=f(x) có bảng biến thiên như sau:
Tập hợp tất cả các giá trị của tham số m để phương trình f(x) + m -1 = 0 có ba nghiệm phân biệt là
A. - 2 ; - ∞
B. - ∞ ; 3
C. 2 ; + ∞
D. 1 ; + ∞
Cho hàm số y=f(x) xác định trên ℝ \ { 1 } , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ.
Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm phân biệt là
A. 1
B. 0
C. 3
D. 2
Cho hàm số f(x) có bảng biến thiên như sau:
Số các giá trị nguyên của m để phương trình f(x) = 2-3m có nghiệm phân biệt là
A. 4
B. 0
C. 1
D. 2
Cho hàm số y=f(x) có bảng biến thiên như sau:
Tìm m để phương trình 2f(x+2019) - m = 0 có 4 nghiệm phân biệt.
A. m ∈ 0 ; 2
B. m ∈ - 2 ; 2
C. m ∈ - 4 ; 2
D. m ∈ - 2 ; 1
Cho hàm số y = f(x) liên tục trên các khoảng - ∞ ; 0 và 0 ; + ∞ có bảng biến thiên như sau
Tìm m để phương trình f(x) = m có 4 nghiệm phân biệt.
A. .
B. .
C. .
D. .
Cho hàm số y = f ( x ) có bảng biến thiên như sau:
Tìm tất cả các giá trị của tham số m để phương trình f(x) = m có ba nghiệm thực phân biệt.
A. m ∈ (-1;+∞)
B. m ∈ (-∞;3)
C. m ∈ (-1;3)
D. m ∈ [-1;3]
Cho hàm số y=f(x) có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của m để phương trình 2f(x) +3m = 0 có 4 nghiệm phân biệt ?
A. 6
B. 7
C. 5
D. 4
Cho hàm số y=f(x) có bảng biến thiên dưới đây:
Để phương trình 3f(2x -1) = m-2 có 3 nghiệm phân biệt thuộc [0;1] thì giá trị của tham số m thuộc khoảng nào dưới đây?
A. - ∞ ; - 3
B. (1;6)
C. ( 6 ; + ∞ )
D. (-3;1)