Gọi S là tập hợp tất cả các số phức z thoả mãn z - 1 = 34 và z + 1 + m i = z + m + 2 i . Gọi z1, z2 là hai số phức thuộc (S) sao cho z 1 - z 2 nhỏ nhất, giá trị của z 1 + z 2 bằng
A.2
B. 2 3
C. 2
D. 3 2
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thoả mãn z. z =1 và |z-3-4i|=m. Tính tổng các phần tử thuộc S.
A. 10.
B. 42.
C. 52.
D. 40.
Gọi S là tập hợp các số phức z thoả mãn | z - i | ≥ 3 và | z - 1 | ≤ 5 . Kí hiệu z 1 , z 2 là hai số phức thuộc S và là những số phức có môđun lần lượt nhỏ nhất và lớn nhất. Tính | z 2 - z 1 | .
A. 5
B. 2 10
C. 4 10
D. 10
Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng tất cả các phần tử của S là
Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng tất cả các phần tử của S là
A. 1
B. 4
C. 2
D. 3
Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng tất cả các phần tử của S là
A. 1
B. 4
C. 2
D. 3
Cách 1 (cách hình học): Gọi M ( x ; y ) x . y ∈ ℝ là điểm biểu diễn của số phức z thỏa mãn yêu cầu bài toán.
Có: z + 2 m = m + 1 ≥ 0
TH1: m + 1 = 0 ⇔ ⇔ m = - 1 ⇒ z = 2 (loại) vì không thỏa mãn phương trình: z - 1 = z - i
TH2: m + 1 > 0 ⇔ m > - 1
Theo bài ra ta có:
z - 1 = z - i z + 2 m = m + 1 ⇔ x - 1 + y i = x + y - 1 i x + 2 m + y i = m + 1 ⇔ x - 1 2 + y 2 = x 2 + y - 1 2 x + 2 m 2 + y 2 = m + 1 2 ⇔ x - y = 0 1 x + 2 m 2 + y 2 = m + 1 2 2 *
Từ (1) suy ra: tập hợp điểm M(x;y) biểu diễn của số phức z là đường thẳng: ( ∆ ) : x - y = 0
Từ (2) suy ra: tập hợp điểm M(x;y) biểu diễn của số phức z là đường tròn
( C ) : T â m I ( - 2 m ; 0 ) b k R = m + 1
Khi đó: M ∈ ∆ ∩ ( C ) ⇒ số giao điểm M chính là số nghiệm của hệ phương trình (*).
Để tồn tại hai số phức phân biệt z 1 , z 2 thỏa mãn ycbt ⇔ ( C ) cắt ∆ tại hai điểm phân biệt
⇔ d I , ∆ < R ⇔ - 2 m 2 < m + 1 m + 1 > 0 ⇔ - m + 1 < 2 m < m + 1 m + 1 > 0 ⇔ 1 - 2 < m < 1 + 2 m > - 1
Vì m ∈ ℝ ⇒ m ∈ S 0 ; 1 ; 2 . Vậy tổng các phần tử của S là 0+1+2=3.
Cách 2 (cách đại số):
Giả sử: z = x + y i x ; y ∈ ℝ
Có: z + 2 m = m + 1 ≥ 0
TH1: m + 1 = 0 ⇔ ⇔ m = - 1 ⇒ z = 2 (loại) vì không thỏa mãn phương trình: z - 1 = z - i
TH2: m + 1 > 0 ⇔ m > - 1 (1)
Theo bài ra ta có:
z - 1 = z - i z + 2 m = m + 1 ⇔ x - 1 + y i = x + y - 1 i x + 2 m + y i = m + 1 ⇔ x - 1 2 + y 2 = x 2 + y - 1 2 x + 2 m 2 + y 2 = m + 1 2 ⇔ y = x x + 2 m 2 + x 2 = m + 1 2 ⇔ y = x 2 x 2 + 4 m x + 3 m 2 - 2 m + 1 = 0 *
Để tồn tại hai số phức phân biệt z 1 , z 2 thỏa mãn ycbt PT (*) có 2 nghiệm phân biệt
⇔ ∆ ' = 4 m 2 - 2 ( 3 m 2 - 2 m - 1 ) = 2 - m 2 + 2 m + 1 > 0 ⇔ 1 - 2 < m < 1 + 2 ( 2 )
Kết hợp điều kiện (1) và (2), m ∈ ℝ ⇒ m ∈ S = 0 ; 1 ; 2
Vậy tổng các phần tử của S là: 0+1+2=3
Chọn đáp án D.
Gọi S là tập hợp các số phức z có phần thực và phần ảo đều là các số nguyên đồng thời thoả mãn hai điều kiện: z - 3 - 4 i ≤ 2 và z + z ¯ ≤ z - z ¯ . Số phần tử của tập S bằng
A. 11.
B. 12.
C. 13.
D. 10.
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z. z ¯ = 1 và |z - 3 + i|. Tìm số phần tử của S
A. 1.
B. 2.
C. 3.
D. 4
Đáp án A
Đặt z=x+yi
Ta có suy ra tập biểu diễn số phức z là đường tròn tâm M(0;0) bán kính R=1
(m > 0) suy ra tập biểu diễn số phức z là đường tròn tâm N( 3 ;1) bán kính r=m
Để tồn tại duy nhất số phức z thì 2 đường tròn phải tiếp xúc với nhau suy ra MN=R+r
Vậy tập S chỉ có 1 giá trị của m
Gọi S là tập hợp tất cả các giá trị thực của m để tồn tại 4 số phức z thỏa mãn | z + z ¯ | + | z - z ¯ | = 2 và z ( z ¯ + 2 ) - ( z + z ¯ ) - m là số thuần ảo. Tổng các phần tử của S là:
A. c
B. 2 + 1 2
C. 2 - 1 2
D. 1 2
Gọi S là tập hợp các số phức z thoả mãn z - i ≥ 3 và z - i ≤ 5 . Kí hiệu z 1 , z 2 là hai số phức thuộc S và là những số phức có môđun lần lượt nhỏ nhất và lớn nhất. Tính z 2 - z 1 .
A. z 2 - z 1 = 5 .
B. z 2 - z 1 = 2 10 .
C. z 2 - z 1 = 4 10 .
D. z 2 - z 1 = 10 .