Gọi S là tập hợp tất cả các giá trị thực của m để tồn tại 4 số phức z thỏa mãn | z + z ¯ | + | z - z ¯ | = 2 và z ( z ¯ + 2 ) - ( z + z ¯ ) - m là số thuần ảo. Tổng các phần tử của S là:
A. c
B. 2 + 1 2
C. 2 - 1 2
D. 1 2
Gọi S là tập hợp các số nguyên m sao cho tồn tại 2 số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng các phần tử của S là
A. 1
B. 4
C. 2
D. 3
Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng tất cả các phần tử của S là
A. 1
B. 4
C. 2
D. 3
Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng tất cả các phần tử của S là
A. 1
B. 4
C. 2
D. 3
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thoả mãn z. z =1 và |z-3-4i|=m. Tính tổng các phần tử thuộc S.
A. 10.
B. 42.
C. 52.
D. 40.
Tổng các phần thực của các số phức z thỏa mãn đồng thời hai điều kiện:
|z-1|=1 (1+i)( z ¯ -i) có phần ảo bằng 1
A. 2
B. 3
C. 0
D. 1
Cho số phức z thoả mãn z - 1 ≤ 1 và z - z ¯ có phần ảo không âm. Tập hợp các điểm biểu diễn số phức z là một miền phẳng. Tính diện tích S của miền phẳng này
A. S = π
B. S = 2 π
C. S = 1 2 π
D.S = 1.
Gọi S là tập hợp các số thực m sao cho với mỗi m ∈ S có đúng một số phức thỏa mãn | z - m | = 6 v à z z - 4 là số thuần ảo. Tính tổng của các phần tử của tập S.
A. 10
B. 0
C. 16
D. 8
Gọi S là tập hợp các số thực m sao cho với mỗi m ∈ S có đúng một số phức thỏa mãn z - m = 4 và z z - 6 là số thuần ảo. Tính tổng của các phần tử của tập S
A. 0
B. 12.
C. 6
D. 14