Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 5 2019 lúc 3:15

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 9 2021 lúc 17:13

\(f\left(0\right)=\dfrac{b}{d}\Rightarrow f\left(f\left(0\right)\right)=0\Rightarrow f\left(\dfrac{b}{d}\right)=0\)

\(\Rightarrow\dfrac{\dfrac{ab}{d}+b}{\dfrac{cb}{d}+d}=0\Rightarrow b\left(a+d\right)=0\Rightarrow\left[{}\begin{matrix}b=0\\d=-a\end{matrix}\right.\)

TH1: \(b=0\)

\(f\left(1\right)=1\Rightarrow a=c+d\)

\(f\left(2\right)=2\Rightarrow2a=2\left(2c+d\right)\Rightarrow a=2c+d\) 

\(\Rightarrow2c+d=c+d\Rightarrow c=0\) (ktm)

TH2: \(d=-a\)

\(f\left(1\right)=1\Rightarrow a+b=c+d=c-a\Rightarrow2a+b=c\) (1)

\(f\left(2\right)=2\Rightarrow2a+b=2\left(2c+d\right)=2\left(2c-a\right)\Rightarrow4a+b=4c\) (2)

Trừ (2) cho (1) \(\Rightarrow2a=3c\Rightarrow\dfrac{a}{c}=\dfrac{3}{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\infty}\dfrac{ax+b}{cx+d}=\dfrac{a}{c}=\dfrac{3}{2}\)

Hay \(y=\dfrac{3}{2}\) là tiệm cận ngang

nguyễn hoàng lê thi
Xem chi tiết
Trần Quốc Anh
Xem chi tiết
Minh Anh
Xem chi tiết
Tống Minh Tùng
Xem chi tiết
I am➻Minh
Xem chi tiết
zZz Cool Kid_new zZz
16 tháng 3 2020 lúc 12:46

Theo định lý Bezout ta có:

\(f\left(1\right)=f\left(2\right)=f\left(-3\right)=2;f\left(-2\right)=-10\)

Ta có:

\(f\left(1\right)=a+b+c+d+1=2\)

\(f\left(2\right)=8a+4b+2c+d+16=2\)

\(f\left(-3\right)=-27a+9b-3c+d+81=2\)

\(f\left(-2\right)=-8a+4b-2c+d+16=-10\)

Đến đây bạn dùng Casio fx 580 tìm nghiệm hộ mình nhé !

Khách vãng lai đã xóa
Nguyễn Đức Huân
Xem chi tiết
Phuong Nguyen dang
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 6 2022 lúc 22:09

a: \(f\left(1\right)=\dfrac{1-1}{1-2}=-1\)

\(f\left(-1\right)=\dfrac{-1-1}{-1-2}=-\dfrac{2}{-3}=\dfrac{2}{3}\)

\(f\left(0\right)=\dfrac{0-1}{0-2}=\dfrac{1}{2}\)

\(f\left(2\right)=\dfrac{2-1}{2-2}=\varnothing\)

b: f(x)=2 nên x-1=2x-4

=>2x-4=x-1

=>x=3

c: Để y là số ngyên thì \(x-2+1⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1\right\}\)

hay \(x\in\left\{3;1\right\}\)