Cho tam giác DEF cân tại D, phân giác DM. Gọi I là trung điểm của DF, N đối xứng với M qua I.
a/ C/m: Tứ giác DMFN là hình chữ nhật.
b/ Tứ giác DEMN là hình bình hành?
gấp lắm mọi người ơi huhuh
Cho tam giác DEF cân tại D, phân giác DM. Gọi I là trung điểm của DF, N đối xứng với M qua I.
a/ C/m: Tứ giác DMFN là hình chữ nhật.
b/ Tứ giác DEMN là hình bình hành?
Cho tam giác MNP cân tại M, đường trung tuyến MD. Gọi I là trung điểm của cạnh MN,E là điểm đối xứng với D qua I.
a) Chứng minh tứ giác MDNE là hình chữ nhật.
b) Gọi F là điểm đối xứng của M qua D. Chứng minh tứ giác MNFP là hình thoi.
mong mọi người chỉ mình, mình đang không hiểu bài này làm sao ạ ( mình biết vẽ hình rồi nhé)
a: Xét tứ giác MDNE có
I là trung điểm chung của MN và DE
góc MDN=90 độ
Do đó: MDNE là hình chữ nhật
b: Xét tứ giác MNFP có
D là trung điểm chung của MF và NP
MN=MP
Do đó: MNFP là hình thoi
Cho hình tam giác DEF vuông tại D, gọi I là trung điểm DF, M là trung điểm của EF.N đối xứng với M qua I. CM tứ giác DMFN là hình thoi.
Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I.
a, chứng minh tứ giác AMCK là hình chữ nhật.
b,chứng minh tứ giác AKMB là hình bình hành.
c,Cho AC=5cm, BC=8cm. Tính diện tích tứ giác AMCK.
d, Tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông.
Hình tự vẽ ạ
a)
Ta có:
Tam giác ABC cân tại A (gt)
Đường trung tuyến AM (gt)
=> AM vừa là đường cao vừa là đường trung tuyến vừa là đường phân giác trong tam giác ABC ( tính chất đường trung tuyến trong tam giác cân )
MA là đường cao(cmt)=> AM vuông góc BC
Tứ giác AMCK có:
I là trung điểm của AC (gt)
I là trung điểm của MK ( K đối xứng M qua I )
=> I là trung điểm của 2 đường chéo AC và MK
=> Tứ giác AMCK là Hình bình hành
Hình bình hành AMCK có:
Góc AMC vuông (AM vuông góc BC )
=> Hình bình hành AMCK là hình chữ nhật
b)
Vì : Hình bình hành AMCK là hình chữ nhật ⇒ AK // MC ( tính chất hình chữ nhật )
Δ ABC có:
M là trung điểm của BC ( AM là đường trung tuyến )
I là trung điểm của AC (gt)
⇒IM Là đường trung bình của ΔABC
⇒IM // AB (tính chất đường trung bình )
Tứ giác AKMB có:
MK // AB ( IM // AB )
AK // BM ( AK // MC )
⇒ Tứ giác AKMB là Hình Bình Hành
c)
Theo đề ra ta có:
AM là đường trung tuyến
⇒ M là trung điểm của BC
⇒ \(BM=CM=\dfrac{1}{2}BC\)
Mà : BC = 8 cm
⇒ \(BM=CM=\dfrac{1}{2}BC=\dfrac{1}{2}8=4cm\)
Áp dụng định lí Pi ta go vào \(\Delta ACM\) ta có:
\(AC^2=AM^2+CM^2\)
\(\Rightarrow AM^2=AC^2-CM^2=5^2-4^2=9\)
\(\Rightarrow AM=3cm\)
Diện tích tứ giác AMCK là :
\(S_{AMCK}=AM.CM\)
\(\Rightarrow S_{AMCK}=3.4=12cm^2\)
Vậy diện tích tứ giác AMCK là 12 cm vuông
c)
Giả sử tam giác ABC vuông cân
=> Góc A = 90 độ; AB = AC ( tính chất tam giác vuông cân )
AM là đường trung tuyến (gt)
=> AM là đường trung tuyến và là đường phân giác trong tam giác ABC
Tam giác ABC có:
AM Là đường trung tuyến ứng với cạnh huyền BC
=> AM = 1/2BC ( tính chất đường trung tuyến ứng với cạnh huyền ) (1)
Mà :
M là trung điểm của BC => BM = CM =1/2BC (2)
từ 1 và 2 => AM = CM = 1/2 BC
Tứ giác AMCK có:
I là trung điểm của AC (gt)
I là trung điểm của MK ( K đối xứng M qua I )
AM = CM (cmt)
=> Tứ giác AMCK là Hình Vuông
Vậy để tứ giác AMCK là hình vuông thì điều kiện cần có của tam giác ABC là tam giác ABC vuông cân
Cho tam giác ABC cân tại A. Đường phân giác AD. I là trung điểm của AB. E là điểm đối xứng với D qua I.
a. Chứng minh tứ giác AEBD là hình chữ nhật.
b. Tứ giác AEDC là hình gì? Vì sao?
a) Xét tam giác ABC cân tại A: AD là phân giác (gt).
\(\Rightarrow\) AD là đường cao (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) AD \(\perp\) BC.
Xét tứ giác AEBD có:
\(+\) I là trung điểm của AB (gt).
\(+\) I là trung điểm của ED (E là điểm đối xứng với D qua I).
\(\Rightarrow\) Tứ giác AEBD là hình bình hành (dhnb).
Mà \(\widehat{ADB}\) = 90o (AD \(\perp\) BC).
\(\Rightarrow\) Tứ giác AEBD là hình chữ nhật (dhnb).
b) Xét tam giác ABC cân tại A: AD là phân giác (gt).
\(\Rightarrow\) AD là trung tuyến (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) D là trung điểm của BC. \(\Rightarrow\) BD = DC.
Mà BD = EA (Tứ giác AEBD là hình chữ nhật).
\(\Rightarrow\) EA = DC (= BD).
Tứ giác AEBD là hình chữ nhật (cmt).
\(\Rightarrow\) EA // DC (Tính chất hình chữ nhật).
Xét tứ giác AEDC có:
\(+\) EA = DC (cmt).
\(+\) EA // DC (EA // BD).
\(\Rightarrow\) Tứ giác AEDC là hình bình hành (dhnb).
Cho tam giac DEF vuông tại D. Gọi M , N lần lượt là trung điểm EF và FD. Vẽ K đối xứng với M qua N.
a. Chứng minh tứ giác DEMN là hình thang vuông và MDKF là hình thoi.
b. Vẽ I là hình chiếu của M trên ED . Chứng minh tứ giác EINM là hình bình hành và tứ giác IDNM là hình chữ nhật.
c. Trên cạnh DF lấy một điểm Q sao cho DQ = DF. Chứng minh : EQ , IN và DM đồng quy tại S .
a: Xét ΔDEF có
M là trung điểm của FE
N là trung điểm của DF
Do đó: MN là đường trung bình của ΔDEF
Suy ra: MN//DE
hay DNME là hình thang vuông
Cho tam giac DEF vuông tại D. Gọi M , N lần lượt là trung điểm EF và FD. Vẽ K đối xứng với M qua N.
a. Chứng minh tứ giác DEMN là hình thang vuông và MDKF là hình thoi.
b. Vẽ I là hình chiếu của M trên ED . Chứng minh tứ giác EINM là hình bình hành và tứ giác IDNM là hình chữ nhật.
c. Trên cạnh DF lấy một điểm Q sao cho DQ = 1/3DF. Chứng minh : EQ , IN và DM đồng quy tại S .
a: Xét ΔDEF có
M là trung điểm của FE
N là trung điểm của DF
Do đó: MN là đường trung bình của ΔDEF
Suy ra: MN//DE
hay DNME là hình thang vuông
Bài 9. Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC. K là điểm đối xứng với M qua điểm I.
a) Chứng minh tứ giác AMCK là hình chữ nhật.
b) Tứ giác ABMK là hình gì? Vì sao?
c) Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh tứ giác ABEC là hình thoi.
d) Tìm điều kiện của ABC để tứ giác AMCK là hình vuông.
v
Bài 21: Tam giác ABC cân tại A, trung tuyến AM. I là trung điểm của AC, D là điểm đối xứng của M qua I, K là điểm đối xứng của D qua C.
a/ Chứng minh tứ giác AMCD là hình chữ nhật.
b/ Chứng minh tứ giác ABMD là hình bình hành.
c/ Gọi O là trung điểm của MC. Chứng minh A, O, K thẳng hàng.
d/ Tìm thêm điều kiện của tam giác ABC để tứ giác AMCD là hình vuông.
giúp gấp với ạ
a, tứ giác AMCD có: ID=IM;IA=IC
⇒tứ giác AMCD là hình bình hành
Lại có:góc AMC=90 độ (ΔABC cân tại A có AM là đường trung tuyến)
⇒tứ giác AMCD là hình chữ nhật
b, Ta có AD//CM và AD=CM (tứ giác ADCM là hình chữ nhật)
mà B∈CM và BM=CM
⇒AD//BM và AD=BM
⇒tứ giác ABMD là hình bình hành