25x+5 = 16x+3
A) Căn 16x - 2 căn 20x +3 căn 25x =28 B) căn 4x-12 - căn 25x-75+ căn 16x-48 C) 2 căn x-2 + 4 căn 9-3+ 6 căn x-5 = x+y+z+4 D) căn x-1 + 2 căn y-4 + 3 căn z-9=1/2(x+y+z)
16x^3-8x^y+xy^2-25x
\(\sqrt{4x+4}+\sqrt{16x+16}-\sqrt{25x+25}=3\)
\(ĐK:x\ge-1\\ PT\Leftrightarrow2\sqrt{x+1}+4\sqrt{x+1}-5\sqrt{x+1}=3\\ \Leftrightarrow\sqrt{x+1}=3\Leftrightarrow x+1=9\Leftrightarrow x=8\left(tm\right)\)
Giải phương trình sau
a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)
b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\)
a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{1^2-2\cdot4x\cdot1+\left(4x\right)^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{\left(4x-1\right)^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\left|4x-1\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=\dfrac{1}{3}\left(ĐK:x\ge\dfrac{1}{4}\right)\\4x-1=\dfrac{1}{3}\left(ĐK:x< \dfrac{1}{4}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=\dfrac{1}{6}\left(tm\right)\end{matrix}\right.\)
b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\) (ĐK: \(x\ge2\))
\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=18+\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=18+3\sqrt{x-2}\)
\(\Leftrightarrow6\sqrt{x-2}=18\)
\(\Leftrightarrow\sqrt{x-2}=3\)
\(\Leftrightarrow x-2=9\)
\(\Leftrightarrow x=9+2\)
\(\Leftrightarrow x=11\left(tm\right)\)
\(\sqrt{4x}\) - \(\sqrt{9x}\) + \(\sqrt{16x}\) = 2
b, \(\sqrt{4x}\) + \(2\sqrt{16x}\) - \(\sqrt{25x}\) = 1,2
c, \(\sqrt{16\left(x-1\right)}\) - \(\sqrt{x-1}\) + \(\sqrt{49\left(x-1\right)}\) =5
(3x^2-16x) ÷ (-3x) +x(x-4) =-2 (5x^3+20x^2-25x) ÷25x=(x-1) (x+2) (3x+1) ^3=3x+1 x^2-4x+4=9(x-2) Tìm x
d: ta có: \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=11\end{matrix}\right.\)
a) 9-64x^2=0
=> 64x^2 = 8
=> \(x^2=\frac{8}{64}=\frac{1}{8}\)
=> \(x=\frac{1}{\sqrt{8}}\)
b ) 25x^2 - 3 = 0
=> 25x^2 = 3
=> \(x^2=\frac{3}{25}\)
=> \(x=\frac{\sqrt{3}}{5}\)
C) 7 - 16x^2 =0
=> 16x^2 = 7
=> \(x^2=\frac{7}{16}\)
=> \(x=\frac{\sqrt{7}}{4}\)
d) 4x^2 - (x-4)^2 = 0
=> 4x^2 - x^2 + 8x - 16 =0
=> 3x^2 + 8x -16 = 0
=> ( 3x^2 + 12x ) - ( 4x +16 ) = 0
=> 3x( x + 4 ) - 4( x + 4 ) = 0
=>( x + 4 )( 3x - 4 ) = 0
=> \(\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}\)
e) ( 3x + 4 )^2 - ( 2x - 5 )^2 = 0
=> ( 3x + 4 + 2x - 5 )( 3x + 4 - 2x + 5 ) = 0
=> ( 5x -1 ) ( x + 9 ) = 0
=> \(\orbr{\begin{cases}5x-1=0\\x+9=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=-9\end{cases}}\)
Trả lời:
a, \(9-64x^2=0\)
\(\Leftrightarrow\left(3-8x\right)\left(3+8x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3-8x=0\\3+8x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{8}\\x=-\frac{3}{8}\end{cases}}}\)
Vậy x = 3/8; x = - 3/8 là nghiệm của pt.
b, \(25x^2-3=0\)
\(\Leftrightarrow\left(5x-\sqrt{3}\right)\left(5x+\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-\sqrt{3}=0\\5x+\sqrt{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{5}\\x=-\frac{\sqrt{3}}{5}\end{cases}}}\)
Vậy \(x=\pm\frac{\sqrt{3}}{5}\)
c, \(7-16x^2=0\)
\(\Leftrightarrow\left(\sqrt{7}-4x\right)\left(\sqrt{7}+4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{7}-4x=0\\\sqrt{7}+4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{7}}{4}\\x=-\frac{\sqrt{7}}{4}\end{cases}}}\)
Vậy \(x=\pm\frac{\sqrt{7}}{4}\)
d, \(4x^2-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(2x-x+4\right)\left(2x+x-4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}}\)
Vậy x = - 4; x = 4/3 là nghiệm của pt.
e, \(\left(3x+4\right)^2-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(3x+4-2x+5\right)\left(3x+4+2x-5\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-9\\x=\frac{1}{5}\end{cases}}}\)
Vậy x = - 9; x = 1/5 là nghiệm của pt.
\(\sqrt{16x-32}+\sqrt{25x-50}=187\sqrt{9x-18}\)
\(\frac{\sqrt{15}+\sqrt{3}}{\sqrt{5}+1}+\frac{4}{1-\sqrt{3}}\)
\(\sqrt{16x-32}+\sqrt{25x-50}=187\sqrt{9x-18}\)
\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=187\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=561\sqrt{x-2}\)
\(\Leftrightarrow552\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(\frac{\sqrt{15}+\sqrt{3}}{\sqrt{5}+1}+\frac{4}{1-\sqrt{3}}\)
\(=\frac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}+\frac{4\left(1+\sqrt{3}\right)}{1-3}\)
\(=\sqrt{3}+\frac{4\left(1+\sqrt{3}\right)}{-2}\)
\(=\sqrt{3}-2-2\sqrt{3}=-2-\sqrt{3}\)
√25x - √16x = 9 khi x bằng
(A) 1 ; (B) 3 ; (C) 9 ; (D) 81
Hãy chọn câu trả lời đúng.
- Chọn D
⇔ 5√x - 4√x = 9 ⇔ √x = 9 ⇔ x = 81