Tìm số các số hạng hữu tỉ trong khai triển 3 + 5 4 n biết n thỏa mãn C 4 n + 1 1 + C 4 n + 1 2 + C 4 n + 1 3 + . . . + C 4 n + 1 2 n = 2 496 - 1
A. 29
B. 30
C. 31
D. 32
1) Có bao nhiêu số hạng trong khai triển \(\left(\sqrt{3}+\sqrt[4]{5}\right)^{124}\) là số nguyên ?
2) Có bao nhiêu số hạng trong khai triển \(\left(\sqrt[4]{3}+\sqrt[3]{4}\right)^{100}\) là số hữu tỉ ?
2) Có bao nhiêu số hạng trong khai triển \(\left(\sqrt[5]{9}+\sqrt[9]{5}\right)^{225}\) là số hữu tỉ ?
Số các số hạng có hệ số là số hữu tỉ trong khai triển 3 3 + x 2 15 là:
A. 2
B. 4
C. 3
D. 5
Số các số hạng có hệ số là số hữu tỉ trong khai triển 3 3 + x 2 15 là:
A. 2.
B. 4.
C. 3.
D. 5.
Cho biết 3 số hạng đầu của khai triển x + 1 2 x n có các hệ số là 3 số hạng liên tiếp của một cấp số cộng. Tìm số hạng thứ 5 trong khai triển trên.
A. 35 4 x 4
B. 35 8
C. 53 8 x 4
D. 53 8
Cho biết 3 số hạng đầu của khai triển x + 1 2 x n , x > 0 có các hệ số là 3 số hạng liên tiếp của một cấp số cộng. Tìm số hạng thứ 5 trong khai triển trên.
A. 35 4 x 4
B. 35 8
C. 53 8 x 4
D. 53 8
Cho biết 3 số hạng đầu của khai triển x + 1 2 x n , x > 0 có các hệ số là 3 số hạng liên tiếp của một cấp số cộng. Tìm số hạng thứ 5 trong khai triển trên.
A. 35 8 x 4
B. 35 8
C. 53 8 x 4
D. 53 8
Cho biết 3 số hạng đầu của khai triển ( x + 1 2 x ) n , x > 0 có các hệ số là 3 số hạng liên tiếp của một cấp số cộng. Tìm số hạng thứ 5 trong khai triển trên
A. 35 8 x 4
B. 35 8
C. 53 8 x 4
D. 53 8
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)
Hàm số u(n) = n3 xác định trên tập hợp M = {1; 2; 3; 4; 5} là một dãy số hữu hạn. Tìm số hạng đầu, số hạng cuối và viết dãy số trên dưới dạng khai triển.
Số hạng đầu của khai triển là u1 = u(1) = 13 = 1.
Số hạng cuối của khai triển là u5 = u(5) = 53 = 125.
Dãy số được viết dưới dạng khai triển là: 1; 8; 27; 64; 125.