Trong công thức CxHyOzNt tổng số liên kết p và vòng là
A. (2x-y + t +2)/2.
B. (2x-y + t +2).
C. (2x-y - t +2)/2.
D. (2x-y + z + t +2)/2.
Tính giá trị biểu thức:
A= x(y-z)+2(z-y) với x=2; y=1,007: z=0.06
B= 2x(y-z)+(2-y)(2+t) với x=18,3; y=24,6; z=10,6; t=31,7
C= (x-y) (y+z)+y(y-x) với x=0,86; y=0,26; z=1,5
D=(y-z)\([2x-\left(x+t\right)]\)=(y-z)(z-t)
A=xy-xz+2z-2y
B=2xy-2xz+22- yt2
C=xy-2yz+y2
bạn tự tính kết quả nha
a: \(A=\left(y-z\right)\left(x-2\right)\)
\(=\left(2-2\right)\cdot\left(1.007-0.06\right)=0\)
b: \(B=2\cdot18.3\cdot\left(24.6-10.6\right)+\left(2-24.6\right)\left(2+31.7\right)\)
\(=36.6\cdot14-761.62=-249.22\)
c: \(C=\left(x-y\right)\left(y+z\right)-y\left(x-y\right)\)
\(=\left(0.86-0.26\right)\left(0.26+1.5\right)-0.26\left(0.86-0.26\right)\)
\(=0.6\cdot1.5=0.9\)
Phân tích các đa thức sau thành nhân tử :
a) (x+y)(2x-y)+(2x-y)(3x-y)-(y-2x)
b) ab^3c^2-a^2b^2c^2+ab^2c^3-a^2bc
c)x^2(y-z)+y^2(z-x)+z^2(x-y)
d) 2x^3+3x^2+2x+3
e)x^3+x^2yz-x^2z^2-xyz^2
f) x^3+y(1-3x^2)+x(3y^2-1)-y^3
a: \(=\left(2x-y\right)\left(x+y+3x-y\right)+\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x+1\right)\)
b: \(=abc\left(b^2c-abc+bc^2-a\right)\)
d: \(=x^2\left(2x+3\right)+2x+3=\left(2x+3\right)\left(x^2+1\right)\)
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
mày hỏi vả bài kiểm tra à thằng điên
Câu 1: Tính giá trị biểu thức sau: B=(3x+5).(2x-1)+(4x-1).(3x+2) với |x|=2 C=(2x+y).(2x+y)+(x-y).(y-z) và x=1;y=1;z=1 Câu 2: Tìm 3 số tự nhiên liên tiếp. Biết tích hai số đầu nhỏ hơn hai số sau là 50. Câu 3: Chứng minh đẳng thức: (x+y).(x^3-x^2y+xy^2+y^2)=x^4+y^4
Câu 1: Tính giá trị biểu thức sau:
B=(3x+5).(2x-1)+(4x-1).(3x+2) với |x|=2
C=(2x+y).(2x+y)+(x-y).(y-z) và x=1;y=1;z=1
Câu 2: Tìm 3 số tự nhiên liên tiếp. Biết tích hai số đầu nhỏ hơn hai số sau là 50.
Câu 3: Chứng minh đẳng thức:
(x+y).(x^3-x^2y+xy^2+y^2)=x^4+y^4
bài 1: Rút gọn rồi tính giá trị biểu thức:
a, ( 2x + y )^2 - ( 2x + y ) ( ( 2x - y ) + y ( x - y ) với x = -2 ; y = 3
b, ( a - 3b )^2 - ( a + 3b )^2 ( a - 1 ) ( b - 2) với a = 1/2 ; b = -3
c, ( 2x - 5 ) ( 2x + 5 ) ( 2x + 1)^2 với x = -2005
a) \(\left(2x+y\right)^2-\left(2x+y\right)\left(2x-y\right)+y\left(x-y\right)\)
\(=\left(2x+y\right)^2-\left(2x\right)^2+y^2+xy-y^2\)
\(=\left(2x+y+2x\right)\left(2x+y-2x\right)+xy\)
\(=\left(4x+y\right)y+xy\)
\(=\left[4\left(-2\right)+3\right].3+\left(-2\right).3\)
\(=\left(-8+3\right).3+1\)
\(=-15+1\)
\(=-14\)
Phân tích các đa thức sau thành nhân tử tổng hợp :
a, ( x^2 + 8x + 7 )( x^2 + 8x + 15 ) + 15
b, ( x^2 + 4x + 8 )^2 + 3x( x^2 + 4x + 8 ) + 2x^2
c, xy( x + y ) + yx( y - z ) - zx( z + x )
d, x^6 - x^4 + 2x^3 + 2x^2
e, x^2( y - z ) + y^2( z - x ) + z^2 ( x - y )
Giúp mình với mình đang cần rất gấp ạ
Tính
a)(2x+1).(2x-1)-4x^2
b)(2x^2+y).(2x^2-y)-4x^2+y^2
c)(2x^2+y)^2-(2x^2-y)^2
d)(2x^3y+y)^2_(y-2x^3y)^2
a/ \(\left(2x+1\right)\left(2x-1\right)-4x^2=\left(2x\right)^2-1^2-4x^2\)
\(=4x^2-1-4x^2\)
b/ \(\left(2x^2+y\right)\left(2x^2-y\right)-4x^2+y^2\)
\(=\left(2x^2\right)^2-y^2-4x^2+y^2=4x^4-y^2-4x^2+y^2=4x^4-4x^2\)
c/ \(\left(2x^2+y\right)^2-\left(2x^2-y\right)^2\)
\(=\left(2x^2+y+2x^2-y\right)\left(2x^2+y-2x^2+y\right)\)
\(=4x^2\cdot2y=8x^2y\)
d/ \(\left(2x^3y+y\right)^2-\left(y-2x^3y\right)^2=\left(2x^3y+y\right)^2-\left(2x^3y-y\right)^2\)
\(=\left(2x^3y+y+2x^3y-y\right)\left(2x^3y+y-2x^3y+y\right)\)
\(=4x^3y\cdot2y=8x^3y^2\)
Bài 1
a) Tìm GTNN của A = \(\dfrac{2x^2-16x+43}{x^2-8x+22}\)
b) Tìm GTLN của B = \(\dfrac{3x^2+9x+17}{3x^2+9x+7}\)
Bài 2: Tìm x để phân thức có giá trị nguyên
a) \(\dfrac{-6}{3x-2}\) b) \(\dfrac{2x+3}{x-5}\) c) \(\dfrac{x^3-x^2+2}{x-1}\) d) \(\dfrac{2x^3+x^2+2x+2}{2x+1}\) e) \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)
Bài 3: Cho biểu thức
A= \(\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x^2+10x}\)
a) Rút gọn b) Tìm x để A = 1; A = 3
Bài 4: Cho x + y + z = 0, tính
P= \(\dfrac{x^2}{y^2+z^2-x^2}+\dfrac{y^2}{z^2+x^2-y^2}+\dfrac{z^2}{x^2+y^2-z^2}\)
a) \(A = \frac{2x^2 - 16x+43}{x^2-8x+22}\) = \(\frac{2(x^2-8x+22)-1}{x^2-8x+22}\) = \(2 - \frac{1}{x^2-8x+22}\)
Ta có : \(x^2-8x+22 \) = \(x^2-8x+16+6 = ( x-4)^2 +6 \)
Vì \((x-4)^2 \ge 0 \) với \( \forall x\in R\) Nên \(( x-4)^2 +6 \ge 6 \)
\(\Rightarrow \) \(x^2-8x+22 \) \( \ge 6\)\(\Rightarrow \) \(\frac{1}{x^2-8x+22} \) \(\le \frac{1}{6}\) \(\Rightarrow \) - \(\frac{1}{x^2-8x+22} \) \(\ge - \frac{1}{6}\)
\(\Rightarrow \) A = \(2 - \frac{1}{x^2-8x+22}\) \( \ge 2-\frac{1}{6}\) = \(\frac{11}{6}\) Dấu "=" xảy ra khi và chỉ khi x=4
Vậy GTNN của A = \(\frac{11}{6}\) khi và chỉ khi x=4
Bài 1: Tính giá trị các biểu thức sau tại: |x| = \(\dfrac {1}{3}\); |y| = 1
a) A= 2x2 - 3x + 5 b) B= 2x2 - 3xy + y2
Bài 2: Tính giá trị các biểu thức A sau biết x + y +1 = 0:
A= x (x + y) - y2 (x + y) + x2 - y2 + 2 (x + y) + 3
Bài 3: Cho x.y.z = 2 và x + y + z = 0. Tính giá trị biểu thức:
A= (x + y)(y + z)(z + x)
Bài 4: Tìm các giá trị của các biến để các biểu thức sau có giá trị bằng 0:
a) |2x - \(\dfrac {1}{3}\)| - \(\dfrac {1}{3}\) b) |2x - \(\dfrac {1}{3}\)| - \(\dfrac {1}{3}\) c) |3x + 2\(\dfrac {1}{3}\)| + |y + 2| = 0 d) (x - 2)2 + (2x - y + 1)2 = 0
bài 1:
|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1
a
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5
= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5
= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5
= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)
b) +) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1
= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)
+) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1
= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)
bài 3
x.y.z = 2 và x + y + z = 0
A = ( x + y )( y +z )( z + x )
= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )
= 0 + 2 = 2
bài 4
a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)
=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)
=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)
2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0
x = 0 : 2 = 2