Trong mặt phẳng Oxy cho điểm B(-3;6) Tìm toạ độ điểm E sao cho B là ảnh của E qua phép quay tâm O góc quay ( - 90 ∘ )
A. E(3;6)
B. E(-3;-6)
C. (-6;-3)
D. E(3;6)
Bài 1 : tìm m để 3 điểm A( 2 ; -1 ) , B ( 1 ; 1 ) , C ( 3 ; m+1 ) trong mặt phẳng Oxy thẳng hàng .
Bài 2 : trong mặt phẳng Oxy cho A ( 1; 2 ) , B ( 3 ; 4 ) . tìm điểm M thuộc Ox sao cho MA + MB đạt giá trị nhỏ nhất .
a) Tính khoảng cách từ gốc toạ độ C(0;0) đến điểm M(3 ; 4) trong mặt phẳng toạ độ Oxy.
b) Cho hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy. Nêu công thức tính độ dài đoạn thẳng IM.
a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:
\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}} = 5\)
b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)
Bài 3. Trong mặt phẳng Oxy cho các điểm A(0,−2), B(1,0), C(5,−1) và D(−2,3).
a) Dựng các điểm A, B, C, D trên mặt phẳng tọa độ Oxy.
cho minh hoi dung cai diem laf no keu minh lam gif he
1. Trong mặt phẳng Oxy, có trọng tâm G(1,-1), M(2,1) và N(4,-2) lần lượt là trung điểm của AB, BC. Tìm tọa độ điểm B
2. Trong mặt phẳng Oxy, cho A(1,3), B(-2,2). Biết đường thẳng AB cắt trục tung tại điểm M(0,b). Giá trị b thuộc khoảng nào
3. Trong mặt phẳng tọa độ Oxy, cho A thỏa vecto OA= 2vecto i + 3vecto j. Tọa độ điểm A là
4. Trong mặt phẳng Oxy, cho vecto x=(1,2), vecto y=(3,4), vecto z=(5,-1). Tọa độ vecto u = 2vecto x + vecto y - vecto z là
5. Trong mặt phẳng tọa độ Oxy, cho M(2,-3), N(4,7). Tọa độ trung điểm I của đoạn thẳng MN là
6. Cho vecto x=(-4,7) và hai vecto a=(2,-1), b=(-3,4). Nếu vecto x = m vecto a + n vecto b thì m, n là cặp số nào
trong mặt phẳng tọa độ oxy cho 3 điểm A(1:1) B(3:2) C(-1:6)
1. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2-2x+4y-4=0\)và điểm M(-1;-3). Gọi I là tâm của (C). Viết phương trình đường thẳng đi qua M và cắt (C) tại hai điểm A,B sao cho tam giác IAB có diện tích lớn nhất
2. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2+4x+4y-17=0\) và điểm A(6;17). Viết phương trình tiếp tuyến của (C) biế tiếp tuyến đi qua điểm A.
trong mặt phẳng oxy cho A (3,7);B(-1,2);C(0,-3). Hỏi 3 điểm A, B ,C có thẳng hàng hay không
trong mặt phẳng oxy cho A (3,7);B(-1,2);C(0,-3). Hỏi 3 điểm A, B ,C có thẳng hàng hay không
Gọi phương trình đường thẳng AB có dạng \(y=ax+b\)
Thay tọa độ A; B vào phương trình ta được:
\(\left\{{}\begin{matrix}3a+b=7\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{4}\\b=\dfrac{13}{4}\end{matrix}\right.\)
hay phương trình AB: \(y=\dfrac{5}{4}x+\dfrac{13}{4}\)
Thế tọa độ C vào phương trình AB:
\(-3=0.\dfrac{5}{4}+\dfrac{13}{4}\Leftrightarrow-3=\dfrac{13}{4}\) (không thỏa mãn)
Vậy C không thuộc AB hay 3 điểm A, B, C không thẳng hàng
trong mặt phẳng Oxy cho hai điểm A(-1;5) và B(3;-1) trung điểm I của đoạn thẳng AB có độ là
\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{-1+3}{2}=1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{5+\left(-1\right)}{2}=2\end{matrix}\right.\)
\(\Rightarrow I\left(1;2\right)\)
Trong mặt phẳng Oxy cho 3 điểm A(2;4) , B(1;2) , C(6;2) . Tam giác ABC là tam giác gì .
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;-2\right)\\\overrightarrow{AC}=\left(4;-2\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=-1.4+\left(-2\right).\left(-2\right)=0\)
\(\Rightarrow\Delta ABC\) vuông tại A