Trong mặt phẳng tọa độ Oxy, phép tịnh tiến theo vecto v → =(-3;2) biến điểm A(1;3) thành điểm A’ có tọa độ
A. (1;3)
B. (-4;-1)
C. (-2;5)
D. (-3;5)
Trong mặt phẳng tọa độ Oxy, phép tịnh tiến theo vecto v → biến điểm A(3;-1) thành điểm A'(1;4). Tìm tọa độ của vecto v → ?
A. v → =(-4;3)
B. v → =(4;3)
C. v → =(-2;5)
D. v → =(5;-2)
Trong mặt phẳng tọa độ Oxy, phép tịnh tiến theo vecto v → biến điểm A 3 ; − 1 thành điểm A ' 1 ; 4 Tìm tọa độ của vecto ?
A. v → = − 4 ; 3
B. v → = 4 ; 3
C. v → = − 2 ; 5
D. v → = 5 ; − 2
Đáp án C
Ta có:
T v → A = A ' ⇒ A A ' → = v → → v → = − 2 ; 5
Trong mặt phẳng tọa độ Oxy, phép tịnh tiến theo vecto v → = − 3 ; 2 biến điểm A 1 ; 3 thành điểm A’ có tọa độ
A. 1 ; 3
B. − 4 ; − 1
C. − 2 ; 5
D. − 3 ; 5
Đáp án C
Ta có x A ' = − 3 + 1 = − 2 y A ' = 2 + 3 = 5 suy ra A ' − 2 ; 5
Trong mặt phẳng tọa độ Oxy, phép tịnh tiến theo vecto v → =(-3;2) biến điểm A(1;3) thành điểm A’ có tọa độ
A. (1;3)
B. (-4;-1)
C. (-2;5)
D. (-3;5)
trong mặt phẳng tọa độ oxy, phép tịnh tiến theo biến đường thẳng d: 3x-y-7=0 thành đường thẳng 3x-y+13=0. hãy tìm tọa độ vecto u là vecto tịnh tiến, biết rằng cùng phương với .vecto i(1;1)
Do \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{i}=\left(1;1\right)\) nên tồn tại một số thực t sao cho \(\overrightarrow{u}=t.\overrightarrow{i}\) ⇒ \(\overrightarrow{u}=\left(t;t\right)\)
d : 3x - y - 7 = 0 nên A (2 ; - 1) ∈ d
Sau khi thực hiện phép tịnh tiến thì ta được điểm B trên d; : 3x - y + 13
thỏa mãn \(\overrightarrow{AB}=\overrightarrow{u}=\left(t;t\right)\)
⇒ B (t + 2 ; t - 1)
Do B ∉ d' ⇒ 3(t + 2) - (t - 1) + 13 = 0
⇒ t = - 10
⇒ Vecto tịnh tiến là \(\overrightarrow{u}=\left(-10;-10\right)\)
Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình 2 x + y − 1 = 0 . Để phép tịnh tiến theo vecto v → biến d thành chính nó thì v → là vecto nào trong các vecto sau?
A. v → = 2 ; 1
B. v → = 1 ; 2
C. v → = - 2 ; 1
D. v → = - 1 ; 2
Đáp án D
(d) biến thành chính nó khi vecto tịnh tiến cùng phương với (d). Mà (d) có một VTCP là 1 ; 2
Trong mặt phẳng tọa độ Oxy , tìm phương trình đường thẳng ∆' là ảnh của đường thẳng ∆: x+2y-1=0 qua phép tịnh tiến theo vecto v(1;-1)
Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc \(\Delta\Rightarrow x+2y-1=0\) (1)
Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in\Delta'\)
\(\left\{{}\begin{matrix}x'=x+1\\y'=y-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-1\\y=y'+1\end{matrix}\right.\)
Thế vào (1):
\(x'-1+2\left(y'+1\right)-1=0\)
\(\Leftrightarrow x'+2y'=0\)
Hay phương trình \(\Delta'\) có dạng: \(x+2y=0\)
Trong mặt phẳng tọa độ Oxy cho vectơ v → = - 1 ; 2 , A 3 ; 5 , B - 1 ; 1 và đường thẳng d có phương trình x – 2 y + 3 = 0 .
a. Tìm tọa độ của các điểm A' , B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v →
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ v →
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo v .
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Trong mặt phẳng tọa độ Oxy cho vecto v → = 1 ; 2 . Tìm tọa độ của điểm M’ là ảnh của điểm M 3 ; - 1 qua phép tịnh tiến T v → .
Ta có M(x^',y') là ảnh của M qua phép tịnh tiến theo vecto v→
⇒ M(4;1)