Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
thinh

trong mặt phẳng tọa độ oxy, phép tịnh tiến theo biến đường thẳng d: 3x-y-7=0 thành đường thẳng 3x-y+13=0. hãy tìm tọa độ vecto u là vecto tịnh tiến, biết rằng cùng phương với .vecto i(1;1)

Ngô Thành Chung
25 tháng 8 2021 lúc 14:41

Do \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{i}=\left(1;1\right)\) nên tồn tại một số thực t sao cho \(\overrightarrow{u}=t.\overrightarrow{i}\) ⇒ \(\overrightarrow{u}=\left(t;t\right)\) 

d : 3x - y - 7 = 0 nên A (2 ; - 1) ∈ d

Sau khi thực hiện phép tịnh tiến thì ta được điểm B trên d; : 3x - y + 13

thỏa mãn \(\overrightarrow{AB}=\overrightarrow{u}=\left(t;t\right)\)

⇒ B (t + 2 ; t - 1)

Do B ∉ d' ⇒ 3(t + 2) - (t - 1) + 13 = 0

⇒ t = - 10

⇒ Vecto tịnh tiến là \(\overrightarrow{u}=\left(-10;-10\right)\)


Các câu hỏi tương tự
Mobile Lq
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hiệp Lê
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Tuệ Nhi
Xem chi tiết