Trong mặt phẳng tọa độ Oxy, phép tịnh tiến theo vecto v → =(-3;2) biến điểm A(1;3) thành điểm A’ có tọa độ
A. (1;3)
B. (-4;-1)
C. (-2;5)
D. (-3;5)
Trong mặt phẳng hệ trục tọa độ Oxy. Phép tịnh tiến theo v → = ( 1 ; 3 ) biến điểm M ( - 3 ; 1 ) thành điểm M' có tọa độ là:
Trong mặt phẳng tọa độ Oxy, phép tịnh tiến theo vecto v → biến điểm A(3;-1) thành điểm A'(1;4). Tìm tọa độ của vecto v → ?
A. v → =(-4;3)
B. v → =(4;3)
C. v → =(-2;5)
D. v → =(5;-2)
Trong mặt phẳng Oxy, cho điểm A(2;1) và véc tơ a → (1;3). Phép tịnh tiến theo vectơ a → biến điểm A thành điểm A'. Tọa độ điểm A' là
A. (-1;-2)
B. (1;2)
C. (4;3)
D. (3;4)
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v → ( 0 ; 0 ) biến điểm A(0;2) thành điểm A’ có tọa độ:
A. A’(1;1)
B. A’(1;2)
C. A’(1;3)
D. A’(0;2)
Trong mặt phẳng tọa độ , nếu phép tịnh tiến biến điểm thành điểm thì nó biến điểm thành:
A.
điểm
B.điểm
C.điểm
D.điểm
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(2;5) Phép tịnh tiến theo véctơ v → 1 ; 2 biến điểm M thành điểm M'. Tọa độ điểm M' là :
A. (3;7)
B. (1;3)
C. (3,1)
D. (4;7)
Trong mặt phẳng tọa độ Oxy cho vectơ v → = - 1 ; 2 , A 3 ; 5 , B - 1 ; 1 và đường thẳng d có phương trình x – 2 y + 3 = 0 .
a. Tìm tọa độ của các điểm A' , B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v →
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ v →
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo v .
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v → ( 1 ; 1 ) biến điểm A(0;2) thành A’ và biến điểm B(-2;1) thành B’, khi đó:
A. A’B’ = √5
B. A’B’ = √10
C. A’B’ = √11
D. A’B’ = √12