Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
25.Lê Ngọc Phan-8A
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 5 2022 lúc 21:46

\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)

\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)

 

 

Quỳnh Hoa Tạ
Xem chi tiết
Erza Scarlet
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 22:39

Câu 5:B

Câu 4: C

Câu 3: D

Câu 2: A

Câu 1: A

Huy Hoàng Phạm (Ken)
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 10:39

a: Để A là số nguyên thì

x^3-2x^2+4 chia hết cho x-2

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

b: Để B là số nguyên thì

\(3x^3-x^2-6x^2+2x+9x-3+2⋮3x-1\)

=>\(3x-1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)

 

Hà Thị Phương Linh
Xem chi tiết
Nguyễn Huy Tú
13 tháng 11 2020 lúc 20:09

x^4 + x^3 - 3x^2 + x + 2 x^2 -1 x^2 + x - 2 x^4 - x^2 x^3 - 2x^2 + x x^3 -x -2x^2 +2x +2 -2x^2 +2 2x

b, tuong tu 

Khách vãng lai đã xóa
qqqq
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 6 2023 lúc 22:02

2:

=>x^3-1-2x^3-4x^6+4x^6+4x=6

=>-x^3+4x-7=0

=>x=-2,59

4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50

=>-62x+12=-50

=>x=1

Tẹt Sún
Xem chi tiết
phantranbaonguyen
Xem chi tiết
Tố Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2023 lúc 17:40

a: \(A=\left[\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right)\right]:\left[\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right]\)

\(=\left(\dfrac{4x}{x+2}-\dfrac{8x^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2}{x}\right)\)

\(=\dfrac{4x\left(x-2\right)-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2\left(x-2\right)}{x\left(x-2\right)}\)

\(=\dfrac{-8x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-2\right)}{x-1-2x+4}\)

\(=\dfrac{-8x^2}{\left(x+2\right)\cdot\left(-x+3\right)}\)

\(=\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}\)

b: \(x^2+2x=15\)

=>\(x^2+2x-15=0\)

=>(x+5)(x-3)=0

=>\(\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)

Thay x=-5 vào A, ta được:

\(A=\dfrac{8\cdot\left(-5\right)^2}{\left(-5-3\right)\left(-5+2\right)}=\dfrac{8\cdot25}{\left(-8\right)\cdot\left(-3\right)}=\dfrac{25}{3}\)

c: |A|>A

=>A<0

=>\(\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}< 0\)

=>(x-3)(x+2)<0

TH1: \(\left\{{}\begin{matrix}x-3>0\\x+2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 3\\x>-2\end{matrix}\right.\)

=>-2<x<3

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}-2< x< 3\\x\notin\left\{0;2\right\}\end{matrix}\right.\)