Tìm số hạng không chứa x trong khai triển nhị thức 2 x - 1 x n , ∀ x ≠ 0 biết là số tự nhiên thỏa mãn C n 3 C n n - 3 + 2 C n 3 C n 4 + C n 4 C n n - 4 =1225
A. -20
B. -8
C. -160
D. 160
Tìm số hạng không chứa x trong khai triển nhị thức Newton của (1/x +x³)⁴
SHTQ là: \(C^k_4\cdot\left(x^3\right)^{4-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_4\cdot x^{12-4k}\)
Số hạng ko chứa x tương ứng với 12-4k=0
=>k=3
=>SH đó là \(C^3_4=4\)
Trong khai triển nhị thức x + 1 x n , x ≠ 0 , hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Trong khai triển nhị thức x + 1 x n , x ≠ 0 hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Trong khai triển nhị thức ( x + 1 x ) n hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Tìm số hạng không chứa x trong khai triển nhị thức Newton x + 1 x 2 9 .
A. C 9 2
B. C 9 3
C. C 9 6
D. 1
Tìm số hạng không chứa x trong khai triển nhị thức Newton x - 2 x 2 21 , (x ≠ 0)
A. 2 7 C 21 7
B. 2 8 C 21 8
C. - 2 8 C 21 8
D. - 2 7 C 21 7
Tìm số hạng không chứa x trong khai triển nhị thức Newton x - 2 x 2 21 , x ≠ 0
A . - 2 7 C 21 7
B . 2 8 C 21 8
C . 2 7 C 21 7
D . - 2 8 C 21 8
Chọn A
Số hạng tổng quát của biểu thức x - 2 x 2 21 , x ≠ 0 khi khai triển theo công thức nhị thức Newton là
Số hạng không chứa x trong khai triển nhị thức Newton x - 2 x 2 21 , x ≠ 0 là với k thỏa mãn
21-3k = 0 => k = 7
Vậy số hạng không chứa x trong khai triển nhị thức Newton x - 2 x 2 21 , x ≠ 0 là
Tìm số hạng không chứa x trong khai triển nhị thức Newton x − 2 x 2 21 , x ≠ 0
A. 2 7 C 21 7
B. 2 8 C 21 8
C. − 2 8 C 21 8
D. − 2 7 C 21 7
Tìm số hạng không chứa x trong khai triển nhị thức Newtơn P ( x ) = x 2 + 1 x 15
A. 4000
B. 2700
C. 3003
D. 3600
Cho nhị thức x + 1 x n , x ≠ 0 trong tổng số các hệ số của khai triển nhị thức đó là 1024. Khi đó số hạng không chứa x trong khai triển nhị thức đã cho bằng
A. 252
B. 125
C. -252
D. 525