Giá trị lớn nhất của hàm số y = x ( 2 - ln x ) trên đoạn [2;3] bằng
A.3
D.e
Giá trị nhỏ nhất, giá trị lớn nhất của hàm số y = x = ln(x) trên đoạn 1 2 ; e lần lượt là
A. 1 và e - 1
B. 1 và e
C. 1 2 + ln 2 và e - 1
D. 1 và 1 2 + ln 2
Đáp án A
Ta có: y ' = 1 − 1 x = 0 ⇔ x − 1 x = 0 ⇔ x = 1 . Ta có y 1 2 = 1 2 + ln 2 ; y 1 = 1 ; y e = e − 1
⇒ M a x y = e − 1 ; M i n y = 1
Tìm giá trị lớn nhất của hàm số f(x)=x(2-ln x) trên đoạn [2;3].
A.
B.
C.
D.
Tìm giá trị lớn nhất và nhỏ nhất của hàm số f(x) = 2x2- ln( 3-4x) trên đoạn [ -2; 0]
A. Max y=8; min y=1-ln4
B. max y=8-ln11; miny=1/8 -ln4
C. max y=8+ln11; min y=-ln4
D. max y=8+ln 4; min y=4+ln11
Tìm giá trị lớn nhất của hàm số f x = x 2 - ln x trên đoạn [2;3].
A. m a x 2 ; 3 f x = 4 - 2 ln 2
B. m a x 2 ; 3 f x = 3 - 2 ln 3
C. m a x 2 ; 3 f x = e
D. m a x 2 ; 3 f x = 3 - 2 ln 2
Gọi M; N lần lượt là giá trị nhỏ nhất, lớn nhất của hàm số y = ln ( x + x 2 + 4 ) trên đoạn [0;5] Khi đó tổng M+N là
A.
B.
C. .
D. Kết quả khác
Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau trên các khoảng, đoạn tương ứng: f(x) = x – ln x + 3 trên khoảng (0; ∞ )
min f(x) = f(1) = 4. Không có giá trị lớn nhất.
Giá trị nhỏ nhất của hàm số y = l n ( x 2 - 2 x + 1 ) - x trên đoạn [2;4] là:
A. 2ln2 - 3
B. 2ln2 - 4
C. - 2
D. - 3
tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số trên đoạn [2;4]
y=\(\dfrac{x^2+3}{x-1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :
\(f\left(x\right)=\frac{x^2}{2}-4\ln\left(3-x\right)\) trên đoạn \(\left[-2;1\right]\)
\(f\left(x\right)=\frac{x^2}{2}-4\ln\left(3-x\right)\) trên đoạn \(\left[-2;1\right]\)
Ta có :
\(f'\left(x\right)=x+\frac{4}{3-x}=\frac{-x^2+3x+4}{3-x}=0\Leftrightarrow-x^2+3x+4=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\in\left[-2;1\right]\\x=4\notin\left[-2;1\right]\end{array}\right.\)
Mà :
\(\begin{cases}f\left(-2\right)=2-4\ln5\\f\left(-1\right)=\frac{1}{2}-8\ln2=\frac{1-16\ln2}{2}\\f\left(1\right)=\frac{1}{2}-4\ln2=\frac{1-8\ln2}{2}\end{cases}\) \(\Rightarrow\begin{cases}Max_{x\in\left[-2;1\right]}f\left(x\right)=\frac{1-8\ln2}{2};x=1\\Min_{x\in\left[-2;1\right]}f\left(x\right)=\frac{1-16\ln2}{2};x=-1\end{cases}\)
Tìm giá trị lớn nhất và nhỏ nhất của hàm số :
\(f\left(x\right)=x^2\ln x\) trên đoạn \(\left[\frac{1}{e};e^2\right]\)
Ta có :
\(f'\left(x\right)=2x\ln x-x=x\left(2\ln x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\\ln x=\frac{1}{2}\ln\sqrt{e}\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\notin\left[\frac{1}{e};e^2\right]\\x=\sqrt{e}\in\left[\frac{1}{e};e^2\right]\end{array}\right.\)
Mà : \(\begin{cases}f\left(\frac{1}{e}\right)=-\frac{1}{e^2}\\f\left(e\right)=\frac{e}{2}\\f\left(e^2\right)=2e^4\end{cases}\) \(\Rightarrow\begin{cases}Max_{x\in\left[\frac{1}{e};e^2\right]}f\left(x\right)=2e^4;x=e^2\\Min_{x\in\left[\frac{1}{e};e^2\right]}f\left(x\right)=\frac{-1}{e^2};x=\frac{1}{e}\end{cases}\)