Tập xác định của hàm số y = ln x log 2 x - 2 là
A. D = ( 3 ; + ∞ )
B. D = ( - ∞ ; 0 ) ∪ 3 ; + ∞
C. D = ( 4 ; + ∞ )
D. D = ( - ∞ ; 0 ) ∪ 4 ; + ∞
Tìm tập xác định của các hàm số sau:
a) \(y = \log \left| {x + 3} \right|;\)
b) \(y = \ln \left( {4 - {x^2}} \right).\)
a, \(y=log\left|x+3\right|\) có nghĩa khi \(\left|x+3\right|>0\)
Mà \(\left|x+3\right|\ge0\forall x\in R\)
\(\Rightarrow\) \(\left|x+3\right|>0\) khi \(x\ne-3\)
Vậy tập xác định của hàm số là D = R \ {-3}.
b, \(y=ln\left(4-x^2\right)\) có nghĩa khi \(4-x^2>0\)
\(\Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\)
Vậy tập xác định của hàm số là D = (-2;2).
Đề bài
Tìm tập xác định của mỗi hàm số sau:
a) \(y = \frac{5}{{{2^x} - 3}}\)
b) \(y = \sqrt {25 - {5^x}} \)
c) \(y = \frac{x}{{1 - \ln x}}\)
d) \(y = \sqrt {1 - {{\log }_3}x} \)
a, Điều kiện: \(2^x\ne3\Rightarrow x\ne log_23\)
Vậy D = R \ \(log_23\)
b, Điều kiện: \(25-5^x\ge0\Rightarrow5^x\le5^2\Rightarrow x\le2\)
Vậy D = \((-\infty;2]\)
c, Điều kiện: \(\left\{{}\begin{matrix}x>0\\lnx\ne1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\ne e\end{matrix}\right.\)
Vậy D = \(\left(0;+\infty\right)\backslash\left\{e\right\}\)
d, Điều kiện: \(\left\{{}\begin{matrix}x>0\\1-log_3x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\log_3x\le1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\le3\end{matrix}\right.\Rightarrow0< x\le3\)
Vậy D = \((0;3]\)
Hàm số nào sau đây đồng biến trên tập xác định của nó?
A. \(y = {\log _{0,5}}x\).
B. \(y = {{\rm{e}}^{ - x}}\).
C. \(y = {\left( {\frac{1}{3}} \right)^x}\).
D. \(y = \ln x\).
Chọn D. Bởi vì hàm số ln x luôn luôn dương nên chắc chắn sẽ đồng biến trên TXĐ của nó
Tìm tập xác định của hàm số y = log x 2 - x - 2
A. - ∞ ; 2
B. 1 ; + ∞
C. - ∞ ; - 1 ∪ 2 ; + ∞
D. - 1 ; 1
Tìm tập xác định của hàm số y = log ( x 2 - x - 2 )
A. ( - ∞ ; - 1 ) ∪ ( 2 ; + ∞ )
B. ( - ∞ ; 2 )
C. ( 1 ; + ∞ )
D. (-1; 1)
Tìm tập xác định của hàm số y=log ( x2-x-2)
Tìm tập xác định của hàm số y = log ( x 2 - x - 2 ) ( 1 )
A . ( - ∞ ; 1 ) ∪ ( 2 ; + ∞ )
B . ( - ∞ ; 2 )
C . ( 1 ; + ∞ )
D . ( - 1 ; 1 )
Chọn A
Điều kiện xác định:
Vậy tập xác định của hàm số (1) là
Tìm tập xác định D của hàm số y = l o g ( x 2 - x - 2 ) (1)
Tìm tập xác định của các hàm số sau:
a) \(y = \sqrt {{4^x} - {2^{x + 1}}} \)
b) \(y = \ln (1 - \ln x)\).
\(a,4^x-2^{x+1}\ge0\\ \Leftrightarrow2^{x+1}\le2^{2x}\\ \Leftrightarrow x+1\le2x\\ \Leftrightarrow x\ge1\)
Tập xác định của hàm số là D = \([1;+\infty)\)
\(b,\left\{{}\begin{matrix}x>0\\1-ln\left(x\right)>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x>0\\ln\left(x\right)< 1\end{matrix}\right.\\ \Leftrightarrow0< x< e\)
Tập xác định của hàm số là \(\left(0;e\right)\)
Tập xác định của hàm số y = [ ln ( x - 2 ) ] π là
A. R
B. ( 3 ; + ∞ )
C. ( 0 ; + ∞ )
D. ( 2 ; + ∞ )