Có bao nhiêu số tự nhiên chẵn gồm 3 chữ số khác nhau?
A. 500
B. 405
C. 328
D. 360
a)Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chẵn 3 lẻ
b)Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau trong đó các chữ số chẵn không đứng cạnh nhau
c)Có bao nhiêu số tự nhiên có 8 chữ số khác nhau sao cho có 2 chữ số 1, 3 chữ số 0, các chữ số có quá 1 lần
a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 3 chữ số chẵn có C35 cách
Sắp xếp 6 chữ số này có 6! cách
Vậy có C35 . C35 . 6! số
TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 2 chữ số chẵn có C24 cách
Sắp xếp 5 chữ số có 5! cách
Vậy có C35 . C24 . 5! số
Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ
Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị
Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?
a,gồm có 6 chữ số
b,gồm có 6 chữ số khác nhau
c,gồm có 6 chữ số và chia hết cho 2
Bài 3:Cho X={0;1;2;3;4;5;6}
a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?
b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\
c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .
Bài 4:Có bao nhiêu số tự nhiên có tính chất.
a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau
b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau
c,là số lẻ và có hai chữ số khác nhau
d,là số chẵn và có 2 chữ số khác nhau
Bài 5:Cho tập hợp A{1;2;3;4;5;6}
a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A
b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2
c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5
giúp với tớ cần lắm
Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị
Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?
a,gồm có 6 chữ số
b,gồm có 6 chữ số khác nhau
c,gồm có 6 chữ số và chia hết cho 2
Bài 3:Cho X={0;1;2;3;4;5;6}
a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?
b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\
c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .
Bài 4:Có bao nhiêu số tự nhiên có tính chất.
a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau
b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau
c,là số lẻ và có hai chữ số khác nhau
d,là số chẵn và có 2 chữ số khác nhau
Bài 5:Cho tập hợp A{1;2;3;4;5;6}
a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A
b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2
c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5
dài quá
botay.com.vn
Bài 1. Từ tập hợp có bao nhiêu cách lập một số tự nhiên gồm chữ số khác nhau có tính chất: a. Số tự nhiên lẻ. b. Số tự nhiên chẵn. c. Số tự nhiên chia hết cho d. Số tự nhiên không bắt đầu bởi
Từ tập hợp A={1;2;3;4;5;6}. có bao nhiêu cách lập một số tự nhiên gồm 6 chữ số khác nhau có tính chất: a. Số tự nhiên lẻ. b. Số tự nhiên chẵn. c. Số tự nhiên chia hết cho 5 d. Số tự nhiên không bắt đầu bởi 123
Có bao nhiêu số tự nhiên chẵn gồm 3 chữ số khác nhau?
A. 328
B. 405
C. 360
D. 500
Đáp án A.
Giả sử số đó là a 1 a 2 a 3 ¯ .
Trường hợp 1: a 3 = 0 , chọn a 1 a 2 ¯ có A 9 2 cách chọn
⇒ có A 9 2 số
Trường hợp 2: a 3 ∈ 2 ; 4 ; 6 ; 8 chọn a 1 có 8 cách chọn, chọn a 1 có 8 cách chọn
⇒ có 4.8.8 số
Do đó có A 9 2 + 4.8.8 = 328 số thỏa mãn.
Từ các số: 0;1;2;3;4;5
a) Hỏi có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số
b) Hỏi có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau
c) Hỏi có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chẵn
d) Hỏi có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau chia hết cho 5
e) Hỏi có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số có đôi một khác nhau <3000
Số cách chọn : \(5\times6\times6\times6=1080\)(vì chỉ có 5 cách chọn số đứng đầu)
b) số cách lập số tự nhiên có 4 chữ số :
-Có 5 cách chọn chữ số làm số đầu (1;2;3;4;5) vì số 0 không đứng đầu được
-Có 5 cách chon số thứ hai vì đã chọn 1 số đứng đầu
-Có 4 cách chọn số thứ ba vì đã chọn hai số đầu
-có 3 cách chon số thứ 4 vì chọn 3 số đầu
Suy ra có số cách chọn : \(5\times5\times4\times3=300\)
Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên: a) Có 3 chữ số khác nhau b) Có 3 chữ số chẵn khác nhau c) Có 3 chữ số lẻ khác nhau
a: \(\overline{abc}\)
a có 5 cách
b có 5 cách
c có 4 cách
=>Có 5*5*4=100 cách
b: \(\overline{abc}\)
a có 2 cách
b có 2 cách
c có 1 cách
=>Có 2*2*1=4 cách
c: \(\overline{abc}\)
a có 3 cách
b có 2 cách
c có 1 cách
=>Có 3*2*1=6 cách
Từ các chữ số 1, 2, 3, 4, 5, 6 lập các số tự nhiên gồm 6 chữ số khác nhau. Hỏi:
a. Có tất cả bao nhiêu số?
b. Có bao nhiêu số chẵn, bao nhiêu số lẻ?
c. Có bao nhiêu số bé hơn 432.000?
Đặt A = {1, 2, 3, 4, 5, 6 }
a.Tập hợp A gồm 6 phần tử. Để lập được số tự nhiên có 6 chữ số khác nhau thì mỗi số như vậy được coi là một chỉnh hợp chập 6 của 6 phần tử.
\(\text{Vậy các số đó là: }A_6^6=\frac{6!}{\left(6-6\right)!}=6!=720\text{(số)}\)
b. *Cách 1:
Số chẵn là các số có tận cùng 2, 4, 6
- Gọi số chẵn 6 chữ số khác nhau là abcdef
- Với f = 2, 4, 6 nên có 3 cách chọn f ( f ≠ a, b, c, d, e)
Có 5 cách chọn chữ số a;
Có 4 cách chọn chữ số b (b ≠ a)
Có 3 cách chọn chữ số c(c ≠ a, b);
Có 2 cách chọn chữ số d (d ≠ a, b, c);
Có 1 cách chọn chữ số e (e ≠ a, b, c, d);
Vậy theo quy tắc nhân có: 3.1.2.3.4.5 = 3.5! = 360 (số)
*Cách 2:
Với f = 2, 4, 6 có 3 cách chọn f
a, b, c, d, e ≠ f nên có = 5! cách chọn.
Vậy số cách chọn: 5!.3 = 360 (số)
Gọi số lẻ có 6 chữ số a1b1c1d1e1f1
Ta có: f1 = 1, 3, 5 nên có 3 cách chọn a1, b1, c1, d1, e1 ≠ f1 nên có A 55 cách chọn.
Vậy ta có: 3.5! = 360 số
c. Để có một số có 6 chữ số khác nhau lập từ 6 chữ số trên và nhỏ hơn 432.000 ta có thể:
- Chọn chữ số hàng trăm nghìn nhỏ hơn 4: có 3 cách chọn
Với 5 chữ số còn lại có 5! Cách chọn. Số các số như vậy là:
n1 = 3 .5! = 360 số.
- Chọn chữ số đầu là 4, chữ số thứ hai nhỏ hơn 3 và 4 chữ số còn lại.
Số các số như vậy là: n2 = 2.4! = 48 số
- Chọn hai số đầu là 43 và chữ số thứ 3 nhỏ hơn 2:
Số các số như vậy là: n3 = 3! = 6 số
Vậy số các số nhỏ hơn 432.000 là:
n = n1 + n2 + n3= 360 + 48 + 6 = 414 số.
Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau trong đó có đúng 3 chữ số lẻ và 3 chữ số chẵn ?
A. 151200
B. 64800
C. 72000
D. 76000
Phương án 1: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó không có số 0.
+ Bước 1: Chọn 3 số lẻ, có cách.
+ Bước 2: Chọn 3 số chẵn, có cách.
+ Bước 3: Xếp thứ tự 6 chữ số vừa lấy theo hàng ngang, có 6! = 720 cách.
Theo quy tắc nhân thì số các số trong phương án này là: 10.4.720 = 28800 số.
Phương án 2: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó có số 0.
Tương tự như trên, số các số tự nhiên trong phương án này là: số.
Vậy số các số tự nhiên thỏa mãn yêu cầu là: 28800 + 36000 = 64800 số.
Chọn B.