Cho A= 22+23+24+...+220
Chứng minh A+2 không là số chính phương
cho A=4+23+24+25+...+220
chứng minh rằng A là một lũy thừa của 2
\(A=4+2^3+2^4+2^5+...+2^{20}\)
\(A=2^2+2^3+2^4+2^5+...+2^{20}\)
\(\Rightarrow2A=2^3+2^4+2^5+2^6+...+2^{21}\)
\(\Rightarrow2A-A=\left(2^3+2^4+2^5+2^6+...+2^{21}\right)-\left(2^2+2^3+2^4+2^5+...+2^{20}\right)\)
\(\Rightarrow A=2^{21}-2^2\)
\(=2^2\left(2^{19}-1\right)\)
Vậy A là một lũy thừa của 2.
#kễnh
Cho A=1+2+22+23+...+233. Hỏi A có phải là số chính phương không???
cho 11=2+22+23+...+220
chứng tỏ rằng M chia hết cho 6
mọi người trả lời nhanh giúp em với
\(M=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\\ M=\left(2+2^2\right)+2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\\ M=\left(2+2^2\right)\left(1+2+...+2^{18}\right)\\ M=6\left(1+2+...+2^{18}\right)⋮6\)
Cho A = 1 + 2 + 22 + 23 + ... + 22019
Chứng tỏ rằng A + 1 là một số chính phương
=> 2A =2 + 22 + 23 + ... + 22020
=> 2A-A =( 2 + 22 + 23 + ... + 22020)- (1 + 2 + 22 + 23 + ... + 22019)
=> A =22020-1
=> A+1 =22020
Vậy A + 1 là một số chính phương
Cho A = 1 + 2 + 22 + 23 + 24 +…299 Chứng minh rằng: A không chia hết cho 7
A=(1+2+2^2)+2^3(1+2+2^2)+...+2^96(1+2+2^2)+2^99
=7(1+2^3+...+2^96)+2^99 ko chia hết cho 7
Chứng minh rằng:
a, \(A=n^4-2n^3+3n^2-2n\) Là số chính phương
b, \(B=23^5+23^{12}+23^{2003}\)Không là số chính phương
đề sai à n4-2n3+3n2-2n lm sao là SCP dc
a) A=(n^2-n+1)^2-1=> A không thể chính phuong
=> đề có thể là: \(A=n^4-2n^3+3n^2-2n+1\) Hoặc chứng minh A không phải số phương
b)
23^5 tận cùng 3
23^12 tận cùng 1
23^2003 tận cùng 7
=>B Tận cùng là 1 => B là số lẻ
23^5 chia 8 dư 7
23^12 chia 8 dư 1
23^2003 chia 8 dư 7
(7+1+7=15)
=> B chia 8 dư 7
Theo T/c số một số cp một số chính phương lẻ chỉ có dạng 8k+1=> B không phải số Cp
Mình cũng nghĩ câu a sai nên chỉ giải câu b thôi nhé
b/ Ta có
\(23^5=\left(24-1\right)^5=24^5-24^3+...\left(-1\right)^5=24X-1\)
\(23^{12}=\left(24-1\right)^{12}=24^{12}-24^{11}+...+\left(-1\right)^{12}=24Y+1\)
\(23^{2003}=\left(24-1\right)^{2003}=24^{2003}-24^{2002}+...+\left(-1\right)^{2003}=24Z-1\)
\(\Rightarrow B=23^5+23^{12}+23^{2003}=24\left(X+Y+Z\right)-1+1-1\)
\(=3\left(8X+8Y+8Z-1\right)+2\)
Từ đây ta thấy rằng B chia cho 3 dư 2. Mà không có số chính phương nào chia cho 3 dư 2 nên B không thể là số chính phương
tìm a biết a-23 là số chính phương mà a+22 cũng là số chinh phương
Đặt \(\hept{\begin{cases}a-23=m^2\\a+22=n^2\end{cases}}\left(m,n\inℕ\right)\)
Ta có : \(a+22>a-23\Rightarrow n^2>m^2\)
\(\Rightarrow n^2-m^2=a+22-\left(a-23\right)\)
\(\Rightarrow n^2-m^2=a+22-a+23\)
\(\Rightarrow\left(n-m\right)\left(n+m\right)=45\)
Từ đây ta lập bảng các ước dương của 45
n-m | 1 | 3 | 5 | 9 | 15 | 45 |
n+m | 45 | 15 | 9 | 5 | 3 | 1 |
n | 23 | 9 | 7 | 7 | 9 | 23 |
m | 22 | 6 | 2 | -2 | -6 | -22 |
Vì m, n ∈ N => \(\hept{\begin{cases}n\in\left\{23;9;7\right\}\\m\in\left\{22;6;2\right\}\end{cases}}\)=> \(\hept{\begin{cases}n^2\in\left\{529;81;49\right\}\\m^2\in\left\{484;36;4\right\}\end{cases}}\)
=> \(\hept{\begin{cases}a-23\in\left\{484;36;4\right\}\\a+22\in\left\{529;84;49\right\}\end{cases}}\Rightarrow a\in\left\{507;59;27\right\}\)
Chắc là có sai sót ;-;
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2.
A=4+22+23+....+220
2A=8+23+24+...+221
=> A+2A-A = (8+23+24+...+221) - (4+22+23+....+220)
=>A=221+8 - (22+4)=221
=>A là 1 lũy thừa của 2
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2
A= 4+22+23+....+220
2A= 8+23+24+...+221
A + 2A -A = (8+2^3+2^4+...+2^21) - (4+2^2+2^3+....+2^20)
A= 2^21+8 - (2^2+4)=2^21
Vậy A là 1 lũy thừa của 2