Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Quỳnh Hương
Xem chi tiết
Võ Bình Minh
21 tháng 3 2016 lúc 19:58

Ta có :\(x^3-2x^2-x+2=x\left(x^2-1\right)-2\left(x^2-1\right)=\left(x+1\right)\left(x-1\right)\left(x-2\right)\)

Ta viết biểu thức dạng \(\frac{x^2-3}{x^3-2x^2-x+2}=\frac{A_1}{x+1}+\frac{A_2}{x-1}+\frac{A_3}{x-2}\)

Từ đó 

\(A_1\left(x-1\right)\left(x-2\right)+A_2\left(x+1\right)\left(x-2\right)+A_3\left(x+1\right)\left(x-1\right)\equiv x^2-3\) (1)

hay là \(\left(A_1+A_2+A_3\right)x^2+\left(-3A_1-A_2\right)x+\left(2A_1-2A_2-A_3\right)\equiv x^2-3\)

Áp dụng phương pháp cân bằng hệ số ta có

\(x^2\)  \(A_1+A_2+A\)

\(x^1\)  \(-3A_1-A\)

\(x^0\)  \(2A_1-2A_2-A\)

\(\Rightarrow A_1=-\frac{1}{3},A_2=1,A_3=\frac{1}{3}\)

Mai Xuân Bình
Xem chi tiết
Mai Linh
21 tháng 3 2016 lúc 20:33

Khai triển biểu thức dưới dấu nguyên hàm thành tổng các phân thức đơn giản

\(\frac{\left(x-1\right)dx}{x^2\left(x-2\right)\left(x+1\right)^2}=\frac{A}{x^2}+\frac{B}{x}+\frac{C}{x-2}+\frac{D}{\left(x+1\right)^2}+\frac{E}{x-1}\)

Quy đồng mẫu số chung và cân bằng tử số của hai vế với nhau, ta có :

\(A\left(x-2\right)\left(x+1\right)^2+Bx\left(x-2\right)\left(x+1\right)^2+Cx^2\left(x+1\right)^2+Dx\left(x-2\right)+Ẽx^2\left(x+1\right)\left(x-2\right)\equiv x-1\) (a)

Để xác định các hệ số A, B, C, D, E ta thay \(x=0,x=2,x=-1\) vào (a) ta thu được \(\begin{cases}-2A=-1\\36C=1\\-3D=-2\end{cases}\) \(\Rightarrow\) \(A=\frac{1}{2},C=\frac{1}{36},D=\frac{2}{3}\)

Thay các giá trị này vào (a) và mở các dấu ngoặc ta có :

\(\left(B+E+\frac{1}{36}\right)x^4+\left(\frac{11}{9}-E\right)x^3+\left(-3B-2E-\frac{47}{36}\right)x^2+\left(-\frac{3}{2}-2B\right)x-1\equiv x-1\)

Cân bằng các hệ số của \(x^3\) và của \(x\) ta thu được :

\(\begin{cases}\frac{11}{9}-E=0\\-\frac{3}{2}-2B=1\end{cases}\) \(\Rightarrow\)  \(B=-\frac{5}{4},E=\frac{11}{9}\)

Như vậy :\(A=\frac{1}{2},C=\frac{1}{36},D=\frac{2}{3}\),\(B=-\frac{5}{4},E=\frac{11}{9}\)

Từ đó suy ra :

\(I=-\frac{1}{2x}-\frac{5}{4}\ln\left|x-2\right|-\frac{2}{3\left(x+1\right)}+\frac{11}{9}\ln\left|x+1\right|+C\)

 

diệp hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 8:31

Chọn C

Nguyễn Trọng Nghĩa
Xem chi tiết
Đặng Thị Phương Anh
21 tháng 3 2016 lúc 19:48

Đây là nguyên hàm của phân thức hữu tỉ thực sự. Đa thức mẫu số có hai nghiệm là \(x=0,x=-2\). Ta có \(x^3+4x^2+4x=x\left(x+2\right)^2\)

Ta viết biểu thức dạng \(\frac{x^2+3x-1}{x^3+4x^2+4x}=\frac{A}{x}+\frac{B}{x+2}+\frac{C}{\left(x+2\right)^2}\) (1)

Trong đó A, B, C là những hệ số chưa được xác định (chưa biết)

Nghiệm \(x=2\) có bội bằng 2, cho nên trong khai triển vừa viết nó tương ứng với hai số hạng.

Quy đồng rồi khử mẫu số ở hai vế (1) ta có

\(x^2+3x-1\equiv A\left(x+2\right)^2+Bx\left(x+2\right)+Cx\) (2)

Ta cần xác định các hệ số A,B,C

Cân bằng hệ số các lũy thừa cùng bậc x ở hai vế, ta có :

\(\begin{cases}A+B=1\\4A+2B+C=3\\4A=-1\end{cases}\)\(\Rightarrow\) \(A=-\frac{1}{4};B=\frac{5}{4};C=\frac{3}{2}\)

 

 

Minh Nguyệt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2019 lúc 1:57

Chọn A.

Thư Hoàngg
Xem chi tiết
Nguyen Thi Thu ha
30 tháng 1 2016 lúc 21:28

c1; sin2x=1-cos2x/2 roi tung phan

Nguyen Thi Thu ha
30 tháng 1 2016 lúc 21:35

c2 ;nhan vo duocx2(sinx/2 .cosx/2)=x2/2(sinx+cosx) lai nhan vo roi tung phan nhe

Nguyen Thi Thu ha
30 tháng 1 2016 lúc 21:42

c3 ;bạn viết rõ ra nhé ko hiểu

Con Tim Rung Động
Xem chi tiết
Thái Viết Nam
31 tháng 12 2016 lúc 15:23

Bài 1: 

a) 15-x=7-(-2)
15-x=9

x=15-9

x=6
b) x-35=(-12)-3
x-35=-15

x=-15+35

x=20

c) \(\left|x+2\right|=0\)

=> x+2=0

=> x=0-2

x=-2

d) \(\left|x-5\right|=7\)
\(\orbr{\begin{cases}x-5=7\\x-5=-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=12\\x=-2\end{cases}}\)
Bài 2

a) Tổng ba số là:

15+(-30)+x=-15+x

b) -15+x=45

x=45-(-15)

x=60

c)-15+x=-45

x=-45-(-15)

x=-30

cho mình nhé

Lê Nhật Phi
2 tháng 12 2018 lúc 15:28

a)x=6

b) 20

C)2

Pham Nguyen Gia Bao
Xem chi tiết
Đoàn Thị Hồng Vân
Xem chi tiết
Nguyễn Huỳnh Đông Anh
21 tháng 3 2016 lúc 20:10

Đây là nguyên hàm của phân thức hữu tỉ không thực sự. Ta cần tách phần nguyên của phân thức

\(\frac{x^4+x^2+1}{x\left(x-2\right)\left(x+2\right)}=x+\frac{5x^2+1}{x\left(x-2\right)\left(x+2\right)}\)

Triển khai phân thức hữu tỉ thực sự thành tổng các phân thức đơn giản

\(\frac{5x^2+1}{x\left(x-2\right)\left(x+2\right)}=\frac{A_1}{x}+\frac{A_2}{x-2}+\frac{A_3}{x+2}\)

Ta tính được \(A_1=-\frac{1}{4},A_2=\frac{21}{8},A_3=\frac{21}{8}\)

Do đó :

\(I=\frac{1}{2}x^2+\int\frac{-\frac{1}{4}}{x}dx+\int\frac{\frac{21}{8}}{x-2}dx+\int\frac{\frac{11}{8}}{x+2}dx\)

   \(=\frac{1}{2}x^2-\frac{1}{4}\ln\left|x\right|+\frac{21}{8}\ln\left|x-2\right|+\frac{21}{8}\ln\left|x+2\right|+C\)