Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shuu
Xem chi tiết
Minh Hảo Nguyễn Thị
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 9 2017 lúc 15:07

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 4 2018 lúc 8:59

Ta có 64 = -8a + 4b - 2c + d; -61 = 27a + 9b + 3c +d

Từ y ' = 3 a x 2 + 2 b x + c  ta thu được hai phương trình 0 = 12a - 4b + c; 0 = 27a + 6b + c

Giải hệ gồm 4 phương trình trên ta thu được a = 2; b = -3; c = -36; d = 20 hay a + b + c + d = -17

Đáp án C

Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 6 2021 lúc 18:04

\(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left[2x^2+6mx+3\left(m+1\right)\right]\)

Hàm có cực tiểu mà ko có cực đại khi và chỉ khi \(y'=0\) có đúng 1 nghiệm đơn

TH1: \(2x^2+6mx+3\left(m+1\right)=0\) có nghiệm \(x=0\)

\(\Leftrightarrow m=-1\)

TH2: \(2x^2+6mx+3\left(m+1\right)=0\) có ít hơn 2 nghiệm

\(\Leftrightarrow\Delta'=9m^2-6\left(m+1\right)\le0\)

\(\Leftrightarrow\dfrac{1-\sqrt{7}}{3}\le m\le\dfrac{1+\sqrt{7}}{3}\)

Xem chi tiết
Nguyễn Linh Chi
25 tháng 9 2019 lúc 10:36

a. Hàm số y = -2x + 1 có đồ thị là đường thẳng => Không có cực trị  ( điều này hiển nhiên )

b) \(y=f\left(x\right)=\frac{x}{3}\left(x-3\right)^2\)

Có: 

\(y'=f'\left(x\right)=\frac{1}{3}.\left(x-3\right)^2+\frac{x}{3}.2.\left(x-3\right)=\frac{1}{3}\left(x-3\right)\left(x-3+2x\right)=\left(x-3\right)\left(x-1\right)\)

\(f''\left(x\right)=x-1+x-3=2x-4\)

+) \(f'\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

+) Với x =3 có: \(f''\left(3\right)=2.3-4=2>0\)=> y = f ( x ) đạt cực tiểu tại x = 3.

+ Với x = 1 có: \(f''\left(1\right)=2.1-4=-1< 0\)=> y = f ( x ) đạt cực đại tại x =1

Còn có nhiều cách khác nữa: Vẽ đồ thị, vẽ bảng biến thiên,...

hay vải chưởng đè sai mà bn vẫn làm được

Nguyễn Hữu Tín
Xem chi tiết
Nguyễn Minh Nguyệt
23 tháng 4 2016 lúc 10:23

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 11 2018 lúc 8:00

Quỳnh Cà Ri
Xem chi tiết
Xem chi tiết