Cho dãy số (un) biết u 1 = 2 u 2 = 2 u n = u n - 2 - 2 u n - 1 n ≥ 3 Số hạng thứ 4 của dãy số (un) bằng
A. 0
B. 21
C. -9
D. 34
cho dãy số U(n) với \(\left\{{}\begin{matrix}U_1=3\\U_{n+1}=3U_n-2\left(n\ge1\right)\end{matrix}\right.\).Số hạng tổng quát của dãy là
A. Un= 2.3n+1
B. Un=2.3n-1
C. Un=2.3n-1-1
D. Un=2.3n-1+1
Cho dãy số u n biết u 1 = 2 u n + 1 = 2 u n ∀ n ∈ N * . Tìm số hạng tổng quát của dãy số này?
A. u n = 2 n
B. u n = n n − 1
C. u n = 2
D. u n = 2 n + 1
Cho dãy số u n biết u 1 = 2 , u n + 1 = 2 u n – 1 ( v ớ i n ≥ 1 )
a.Viết năm số hạng đầu của dãy.
b.Chứng minh u n = 2 n - 1 + 1 bằng phương pháp quy nạp.
a. 5 số hạng đầu dãy là:
u1 = 2;
u2 = 2u1 – 1 = 3;
u3 = 2u2 – 1 = 5;
u4 = 2u3 – 1 = 9;
u5 = 2u4 – 1 = 17
b. Chứng minh un = 2n – 1 + 1 (1)
+ Với n = 1 ⇒ u1 = 21 - 1 + 1 = 2 (đúng).
+ Giả sử (1) đúng với n = k ≥ 1, tức là uk = 2k-1 + 1 (1)
Ta chứng minh: uk+1 = 2k + 1. Thật vậy, ta có:
⇒ uk+1 = 2.uk – 1 = 2(2k-1 + 1) – 1 = 2.2k – 1 + 2 – 1 = 2k + 1
⇒ (1) cũng đúng với n = k + 1 .
Vậy un = 2n – 1 + 1 với mọi n ∈ N.
cho dãy số (un), biết un= 2n-1. số hạng un+1 bằng
a. 2n.
b. 2(n+1).
c. 2n +1.
d. 2n -3.
Lời giải:
$u_{n+1}=2(n+1)-1=2n+1$
Đáp án C.
Cho dãy số (Un) xác định bởi U1=-3 và U(n+1)=Un+ n^2 -3n +4, mọi n thuộc N*. Số 1391 là số hạng thứ mấy của dãy ?
Cho dãy u n biết u 1 = 1 u n + 1 = u n + 1 2 n . Xác định số hạng tổng quát của dãy u n
A. 2 - 0 , 5 n - 1
B. 0 , 5 n - 1
C. 0 , 5 n
D. Tất cả sai
Cho dãy số u n , biết u 1 = - 1 , u n + 1 = u n + 3 v ớ i n ≥ 1 .
a. Viết năm số hạng đầu của dãy số;
b. Chứng minh bằng phương pháp quy nạp: u n = 3 n – 4
a. u1 = - 1, un + 1 = un + 3 với n > 1
u1 = - 1;
u2 = u1 + 3 = -1 + 3 = 2
u3 = u2 + 3 = 2 + 3 = 5
u4 = u3 + 3 = 5 + 3 = 8
u5 = u4 + 3 = 8 + 3 = 11
b. Chứng minh phương pháp quy nạp: un = 3n – 4 (1)
+ Khi n = 1 thì u1 = 3.1 - 4 = -1, vậy (1) đúng với n = 1.
+ Giả sử công thức (1) đúng với n = k > 1 tức là uk = 3k – 4.
+ Ta chứng minh (1) đúng với n= k+ 1 tức là chứng minh: uk+1 = 3(k+1) - 4
Thật vậy,ta có : uk + 1 = uk + 3 = 3k – 4 + 3 = 3(k + 1) – 4.
⇒ (1) đúng với n = k + 1
Vậy (1) đúng với ∀ n ∈ N*.
Cho dãy số u n , b i ế t u n = 5 n . K h i đ ó u n + 1 bằng:
A. 5 n + 1
B. 5 n + 5
C. 5 n . 5
D. 5(n+1)
Cho dãy số ( u n ) u 1 = 1 ; u 2 = 2 u n + 1 = 2 u n - u n - 1 + 1 v ớ i n ≥ 2
a) Viết năm số hạng đầu của dãy số;
b) Lập dãy số ( v n ) với v n = u n + 1 − u n . Chứng minh dãy số (vn) là cấp số cộng;