Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huy Hoàng
Xem chi tiết
Lê Anh  Quân
2 tháng 5 2023 lúc 19:45

Ta có:

x^3 + y^3 + x^2 + y^2 = 2xy(x+y)

Đặt S = x + y, P = xy, ta có:

x^3 + y^3 + x^2 + y^2 = (x+y)(x^2 + y^2) = (x+y)^3 - 3xy(x+y) = S^3 - 3PS

Vậy ta có:

S^3 - 3PS + S^2 - 2P = 0

S^3 + S^2 - 3PS - 2P = S(S^2 + S - 3P) - 2P = 0

Do đó, ta có:

S^2 + S - 3P = 0

Sử dụng công thức Viết để tính nghiệm của phương trình bậc hai này, ta được:

S = (-1 + sqrt(1 + 12P))/2 hoặc S = (-1 - sqrt(1 + 12P))/2

Vì x và y là các số thực dương, nên ta chỉ quan tâm đến nghiệm dương của S, tức là:

S = (-1 + sqrt(1 + 12P))/2

Tiếp theo, ta có:

K = x^3 + y^3 + 3/(x^2 + y^2) + 2/((x+y)^2)

= S^3 - 3PS + 3/(S^2 - 2P) + 2/(S^2)

= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2/(S^2)

= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2S^2/(S^2 * (S^2 - 2P))

= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 - 2P))

= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 + 1 - 2xy))

= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)P)

= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)(S^3 - 3PS))

= S^3 - 3PS + (5S^4 - 6PS^2)/(-2S^5 + 10S^3 - 2PS^2 + 2P)

= S^3 - 3PS + (5S^4 - 6PS^2)/(2S^5 - 10S^3 + 2PS^2 - 2P)

= S^3 - 3PS + (5S^2 - 6P)/(2S^3 - 10S +

Trần Anh Tuấn
Xem chi tiết
huyền đỗ
Xem chi tiết
Thần Thánh
Xem chi tiết
Nguyễn Thị BÍch Hậu
29 tháng 6 2015 lúc 21:00

a) 

A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)

\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)

\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)

\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)

\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)

Nguyen Pham Ngoc Kim
13 tháng 11 2016 lúc 21:39

giup minh cau b o tren nha

Võ Thị Thanh Thảo
Xem chi tiết
Nguyễn Thị BÍch Hậu
19 tháng 6 2015 lúc 8:38

câu 1:

ta có: \(x^2+y^2=4\Leftrightarrow\left(x^2+2xy+y^2\right)-2xy=4\Leftrightarrow\left(x+y\right)^2-2xy=4\Leftrightarrow9-2xy=4\Leftrightarrow-xy=-\frac{5}{2}\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.\left(4-xy\right)=3\left(4-\frac{5}{2}\right)=\frac{9}{2}\)

câu 2: tương tự ở trên tính xy rồi lắp vào hằng đẳng thức: \(x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\)

➻❥ɴт_тнủʏ︵²⁰⁰⁴
2 tháng 10 2017 lúc 13:04

6x = 24

  x = 24 : 6

  x = 4

Vậy x = 4

Nguyễn Linh Anh
Xem chi tiết
Đoàn Đức Hà
27 tháng 6 2021 lúc 22:05

a) \(\left(x+y\right)^2=x^2+y^2+2xy\Rightarrow4=10+2xy\Leftrightarrow xy=-3\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3+3.3.2=26\)

b) \(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow m^2=n-2xy\Leftrightarrow xy=\frac{n-m^2}{2}\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=m^3+3.m.\frac{n-m^2}{2}=\frac{3mn}{2}-\frac{m^3}{2}\)

Khách vãng lai đã xóa
Đỗ Thị Hương Xuân
Xem chi tiết
Nhật Hạ
13 tháng 7 2019 lúc 16:07

a, x + y = 3 => (x + y)2 = 9 <=> x2 + 2xy + y2 = 9 <=>  5 + 2xy = 9 <=> 2xy = 4 <=> xy = 2

Ta có: x3 + y3 = (x + y)(x2 - xy + y2) = 3 . (5 - 2) = 3 . 3 = 9

b, x - y = 5 => (x - y)2 = 25 <=> x2 - 2xy + y2 = 25 <=> 15 - 2xy = 25 <=> -2xy = 10 <=> xy = -5

Ta có: x3 - y3 = (x - y)(x2 + xy + y2) = 5 . (15 - 5) = 5 . 10 = 50 

Yukino Ayama
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2023 lúc 19:33

f: x+y+z=3

=>x^2+y^2+z^2+2(xy+xz+yz)=9

=>2(xy+yz+xz)=6

=>xy+yz+xz=3

mà x+y+z=3

nên x=y=z=1

e: x^2+y^2+2=2(x+y)

=>(x+y)^2-2xy+2-2(x+y)=0

=>(x+y)(x+y-2)-2(xy-1)=0

=>x=y=1

Nguyễn Huyền Chi
Xem chi tiết
Bùi Minh Quang
10 tháng 6 2023 lúc 14:08

A=x^3 + y^3 + 3xy(x+y)
  =x+3x^y+3xy^2+y^3
  =(x+y)^3=2^3=8
B=x^2+2xy+y^2+4
  =(x+y)^2+4=4+4=8

C=x^3+y^3+3xy(x+y)+7(x+y)

  =(x+y)^3+7(x+y)
  =2^3+7.2
  =8+14=22

Nguyen Khanh Linh
Xem chi tiết