Chứng tỏ rằng với mọi x ≠ 0 và x ≠ ±a (a là một số nguyên), giá trị của biểu thức a - x 2 + a 2 x + a . 2 a x - 4 a x - a là một số chẵn.
Chứng tỏ rằng với mọi x ≠ 0 và x ≠ ±a (a là một số nguyên), giá trị của biểu thức ( a-x^2+a^2/x+a) . ( 2a/x - 4a/x-a ) là một số chẵn
Rút gọn biểu thức ta có :
\(\left(a-\frac{x^2+a^2}{x+a}\right).\left(\frac{2a}{x}-\frac{4a}{x-a}\right)\)
\(=\frac{a\left(x+a\right)-\left(x^2+a^2\right)}{x+}.\frac{2a\left(x-a\right)-4a.x}{x\left(x-a\right)}\)
\(=\frac{ax+a^2-x^2-a^2}{x+a}.\frac{2ax-2a^2-4ax}{x\left(x-a\right)}\)
\(=\frac{ax-x^2}{x+a}.\frac{-2a^2-2ax}{x\left(x-a\right)}\)
\(=\frac{-\left(x^2-ax\right)}{\left(x+a\right)}.\frac{-\left(2a^2+2ax\right)}{x\left(x-a\right)}\)
\(=\frac{\left(x^2-ax\right).\left(2a^2+2ax\right)}{x\left(x+a\right)\left(x-a\right)}\)
\(=\frac{x\left(x-a\right).2a\left(a+x\right)}{x\left(x+a\right)\left(x-a\right)}\)
\(=2a\)
Với a là một số nguyên thì giá trị biểu thức bằng 2a là một số chẵn.
Chúc bạn học tốt !!!
Rút gọn biểu thức ta có:
Với a là một số nguyên thì giá trị biểu thức bằng 2a là một số chẵn.
Chứng tỏ với x ≠ 0 và x ≠ ± a (a là một số nguyên), giá trị của biểu thức: P = a − x 2 + a 2 x + a . 4 a x − 8 a x − a là một số chẵn.
Rút gọn được P = 4a. Do đó P là một số chẵn (vì a nguyên).
Cho biểu thức \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Chứng tỏ rằng với mọi x, biểu thức C luôn có giá trị là 1 số dương.
v, Tìm tất cả các số nguyên x để C có giá trị là 1 số nguyên
c, Với giá trị nào của x thì biểu thức C có giá trị nhỏ nhất. Tìm giá trị nhỏ đó
\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)
\(\Rightarrow C>0\forall x\)(đpcm)
b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)
\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)
\(\Leftrightarrow x\in\left\{0\right\}\)
....
c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)
Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)
\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)
:33
cho hai biểu thức a= x^2-x+5 và b=(x-1)(x+2)-x(x-2)-3x a, tính giá trị của biểu thức A khi x=2 b, chứng tỏ rằng B=-2 với mọi giá trị của biến x
\(A=x^2-x+5=2^2-2+5=2+5=7\)
\(B=\left(x-1\right)\left(x+2\right)-x\left(x-2\right)-3x\)
\(=x^2+x-2-x^2+2x-3x\)
\(=-2\)
1. Chứng tỏ rằng với mọi số tự nhiên n, các số sau đây là hai số nguyên tố cùng nhau:
a) n+2 và n+3
b) 2n+3 và 3n+5.
2. Tìm số tự nhiên a,b biết ƯCLN (a;b)=4 và a+b=48.
3. Tìm giá trị lớn nhất của biểu thức: C=-(x-5)^2+10.
Chứng minh rằng với mọi số nguyên x, đa thức: P(x)= ax^2 +bx +c (a≠0) nhận giá trị nguyên khi 2a, a+b, c là các số nguyên và ngược lại.
*C/m với x nguyên, 2a, a+b, c là các số nguyên khi đa thức P(x) luôn nhận giá trị nguyên.
\(P\left(0\right)=c\) nguyên.
\(P\left(1\right)=a+b+c\) nguyên mà c nguyên \(\Rightarrow a+b\) nguyên. (1)
\(P\left(2\right)=4a+2b+c\) nguyên mà c nguyên \(\Rightarrow4a+2b\) nguyên. (2)
-Từ (1), (2) suy ra a, b nguyên \(\Rightarrow\)2a nguyên.
\(\Rightarrow\)đpcm.
*C/m với x nguyên, đa thức P(x) luôn nhận giá trị nguyên khi 2a, a+b, c nguyên.
-Từ đây suy ra cả 3 số a,b,c đều nguyên.
\(\Rightarrow\)đpcm.
Cho biểu thức A=\(\dfrac{6-2\sqrt{x}}{\sqrt{x}-5}\) và B=\(\dfrac{1}{\sqrt{x}-5}-\dfrac{x+3\sqrt{x}}{25-x}\)với x>0, x # 25.
1) Tính giá trị biểu thức A khi x =16.
2) Chứng minh rằng A +B là một số nguyên.
1: Thay x=16 vào A, ta được:
\(A=\dfrac{6-2\cdot4}{4-5}=\dfrac{-2}{-1}=2\)
Bài 1: Cho đa thức bậc nhất: f(x) = ax + b và g(x) = bx + a (a và b khác 0). Giả sử đa thức f(x) có nghiệm là x0, tìm nghiệm của đa thức g(x)
Bài 2: Chứng tỏ rằng f(x) = -8x4 + 6x3 - 4x2 + 2x - 1 không có nghiệm nguyên.
Bài 3: Cho đa thức f(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x thuộc Z. Chứng tỏ rằng 6a và 2b là các số nguyên
Chứng tỏ rằng với mọi x ≠ 0 và x ≠ ±a (a là một số nguyên), giá trị của biểu thức
(a-x^2+a^2/x+a).(2a/x-4a/x-a)là một số chẵn.
\(=\dfrac{ax-a^2-x^2-a^2}{x+a}\cdot\dfrac{2a\left(x-a\right)-4ax}{x\left(x-a\right)}\)
\(=\dfrac{x\left(a-x\right)}{x+a}\cdot\dfrac{2a\left(x-a-2x\right)}{x\left(x-a\right)}\)
\(=-2a⋮2\)