Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Toan Nguyên Đuc Nguyên
Xem chi tiết
ILoveMath
9 tháng 11 2021 lúc 10:21

56.B

57.B

58.B

Monkey D. Luffy
9 tháng 11 2021 lúc 10:21

56B

57B

58B

Nguyễn Hạ Long
Xem chi tiết
Trần Đức Thắng
3 tháng 8 2015 lúc 21:08

Bài 1 :

\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)

Bài 2 :

 \(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)

\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)

Tick đúng nha 

Nguyễn Gia Hiệu
1 tháng 8 2021 lúc 16:57

X^2-6+8

Khách vãng lai đã xóa
pham ngoc anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 21:04

\(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)

\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)

Lizy
Xem chi tiết
IamnotThanhTrung
1 tháng 7 2023 lúc 21:05

Đề có đúng không bạn

Phùng Công Anh
1 tháng 7 2023 lúc 21:05

`x^2-6x+7=(x^2-6x+9)-2=(x-3)^2-(sqrt2)^2=(x-3-sqrt2)(x-3+sqrt2)`

Tuyet
1 tháng 7 2023 lúc 21:06
Tiến Đạt
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 11 2021 lúc 14:09

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Lê Hồng Ngọc
Xem chi tiết
An Nhiên
2 tháng 10 2017 lúc 10:58

x7 + x2 + 1 = (x7 – x) + (x2 + x + 1) 
= x.(x6 – 1) + (x2 + x +1) 
= x.(x3 - 1).(x3 +1) + (x2 + x +1) 
= x.(x-1).(x2 + x +1).(x3 +1) + (x2 + x +1) 
= (x2 + x +1).[x.(x-1).(x3 +1) + 1] 
= (x2 + x +1).[(x2-x).(x3 +1) + 1] 
= (x2 + x +1).(x5-x4 + x2 -x + 1)

Nhật Thiên
2 tháng 10 2017 lúc 11:34

t.i.c.k mik mik t.i.c.k lại

trieu trieu
Xem chi tiết
Akai Haruma
28 tháng 12 2023 lúc 13:57

Lời giải:
\(x^3(x^2-7)^2-36x=x[x^2(x^2-7)^2-36]\\ =x[(x^3-7x)^2-6^2]=x(x^3-7x-6)(x^3-7x+6)\\ =x[x^2(x-3)+3x(x-3)+2(x-3)][x^2(x-2)+2x(x-2)-3(x-2)]\\ =x(x-3)(x^2+3x+2)(x-2)(x^2+2x-3)\\ =x(x-3)(x+1)(x+2)(x-2)(x-1)(x+3)\)

Dung Vu
Xem chi tiết
Thanh Tu Nguyen
Xem chi tiết
Lê Song Phương
7 tháng 10 2023 lúc 5:29

\(f\left(x\right)=x^7+x^2+1\)

\(f\left(x\right)=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(f\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(f\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(f\left(x\right)=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(f\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

 Xét đa thức \(g\left(x\right)=x^5-x^4+x^2-x+1\). Giả sử đa thức này có nghiệm hữu tỉ \(x=\dfrac{p}{q}\left(p,q\inℤ;\left(p,q\right)=1\right)\) thì \(p|1,q|1\) nên \(x=\pm1\). Thử lại, ta thấy cả 2 nghiệm này đều không thỏa mãn. Do đó đa thức g(x) không thể có nghiệm hữu tỉ.   (*)

 Giả sử ta có thể phân tích tiếp \(g\left(x\right)\) thành nhân tử thì \(g\left(x\right)=h\left(x\right).j\left(x\right)\) với h(x) và j(x) là các đa thức hệ số hữu tỉ khác hằng có bậc nhỏ hơn 5 thì một trong 2 đa thức h(x), j(x) phải có bậc lẻ (vì nếu cả 2 cùng có bậc chẵn thì \(g\left(x\right)=h\left(x\right).j\left(x\right)\) sẽ có bậc chẵn, vô lí). Mà một đa thức bậc lẻ thì luôn có nghiệm nên nếu g(x) phân tích được thành nhân tử thì nó sẽ có nghiệm hữu tỉ, mâu thuẫn với (*).

 Vậy ta không thể phân tích tiếp g(x) thành nhân tử. Điều này có nghĩa rằng ta đã hoàn thành xong việc phân tích f(x) thành nhân tử.

Nguyễnganon
6 tháng 10 2023 lúc 22:43

6.25 cm nha

Lê Song Phương
7 tháng 10 2023 lúc 5:37

 Mình có lưu ý là mọi đa thức có dạng \(f\left(x\right)=x^{3m+1}+x^{3n+2}+1\left(m,n\inℕ^∗\right)\) đều có thể phân tích được thành nhân tử theo cách tương tự.

Trần Văn Hoàng
Xem chi tiết
Monkey D. Luffy
28 tháng 10 2021 lúc 15:36

\(=3x^2+6x-14x+2x^2\\ =5x^2-8x=x\left(5x-8\right)\)