Giải các phương trình sau:
a) x 2 –l0x = -25; b) 4 x 2 - 4x = -1;
c) ( 1 - 2 x ) 2 = ( 3 x - 2 ) 2 ; d) ( x - 2 ) 3 + ( 5 - 2 x ) 3 =0.
giải các phương trình sau:
a. x2-25=8(5-x)
b.x-2/ x+2 - 2(x-11)/x2-4 =3/x-2
a.\(x^2-25=8\left(5-x\right)\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)-8\left(5-x\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+8\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-13\end{matrix}\right.\)
b.\(\dfrac{x-2}{x+2}-\dfrac{2\left(x-11\right)}{x^2-4}=\dfrac{3}{x-2}\) ; \(ĐK:x\ne\pm2\)
\(\Leftrightarrow\dfrac{\left(x-2\right)\left(x-2\right)-2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(x-2\right)^2-2\left(x-11\right)=3\left(x+2\right)\)
\(\Leftrightarrow x^2-4x+4-2x+22=3x+6\)
\(\Leftrightarrow x^2-9x+20=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\)
Bài 1. Giải các phương trình sau:
a) |4x2 - 25| = 0
b) |x - 2| = 3
c) |x - 3| = 2x - 1
d) |x - 5| = |3x - 2|
Lời giải:
a) $|4x^2-25|=0$
$\Leftrightarrow 4x^2-25=0$
$\Leftrightarrow (2x-5)(2x+5)=0$
$\Rightarrow x=\pm \frac{5}{2}$
b)
$|x-2|=3$
\(\Rightarrow \left[\begin{matrix} x-2=-3\\ x-2=3\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-1\\ x=5\end{matrix}\right.\)
c)
\(|x-3|=2x-1\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ \left[\begin{matrix} x-3=2x-1\\ x-3=1-2x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\Rightarrow x=\frac{4}{3}\)
d)
$|x-5|=|3x-2|$
\(\Rightarrow \left[\begin{matrix} x-5=3x-2\\ x-5=2-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{7}{4}\end{matrix}\right.\)
giải các phương trình sau:
a) \(\dfrac{-\left(x^2+5\right)}{x^2-25}=\dfrac{3}{x+5}+\dfrac{x}{x-5}\)
a) ĐKXĐ: \(x\notin\left\{5;-5\right\}\)
Ta có: \(\dfrac{-\left(x^2+5\right)}{x^2-25}=\dfrac{3}{x+5}+\dfrac{x}{x-5}\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-x^2-5}{\left(x-5\right)\left(x+5\right)}\)
Suy ra: \(3x-15+x^2+5x+x^2+5=0\)
\(\Leftrightarrow2x^2+8x-10=0\)
\(\Leftrightarrow2x^2+10x-2x-10=0\)
\(\Leftrightarrow2x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\2x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={1}
`a,(-(x^2+5))/(x^2-25)=3/(x+5)+x/(x-5)`
`ĐK:x ne +-5`
`pt<=>-x^2+5=3(x-5)+x(x+5)`
`<=>-x^2+5=3x-15+x^2+5x`
`<=>-x^2+5=x^2+8x-15`
`<=>2x^2+8x-20=0`
`<=>x^2+4x-5=0`
`<=>x^2-x+5x-5=0`
`<=>x(x-1)+5(x-1)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=-5\end{array} \right.$
Vậy `S={1,-5}`
Câu 1: Giải các phương trình sau:
a) 3- 4x (25 - 2x ) = 8x2 + x - 300
b)
c)
Giải các bất phương trình sau:
a) \({2^x} > 16\);
b) \(0,{1^x} \le 0,001\);
c) \({\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{{25}}} \right)^x}\).
a) \({2^x} > 16 \Leftrightarrow {2^x} > {2^4} \Leftrightarrow x > 4\) (do \(2 > 1\)) .
b) \(0,{1^x} \le 0,001 \Leftrightarrow 0,{1^x} \le 0,{1^3} \Leftrightarrow x \ge 3\) (do \(0 < 0,1 < 1\)).
c) \({\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{{25}}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {{{\left( {\frac{1}{5}} \right)}^2}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{5}} \right)^{2x}} \Leftrightarrow x - 2 \le 2{\rm{x}}\) (do \(0 < \frac{1}{5} < 1\))
\( \Leftrightarrow x \ge - 2\).
Giải các phương trình sau:
a/ 3x – 2 = 2x – 3
b/ 7 – 2x = 22 – 3x
c) 8x – 3 = 5x + 12
d/ x – 12 + 4x = 25 + 2x – 1
e/ x + 2x + 3x – 19 = 3x + 5
a) \(PT\Leftrightarrow3x-2x=2-3\Leftrightarrow x=-1\)
Vậy: \(S=\left\{-1\right\}\)
b) \(PT\Leftrightarrow-2x+3x=-7+22\Leftrightarrow x=15\)
Vậy: \(S=\left\{15\right\}\)
c) \(PT\Leftrightarrow8x-5x=3+12\Leftrightarrow3x=15\Leftrightarrow x=5\)
Vậy: \(S=\left\{5\right\}\)
d) \(PT\Leftrightarrow x+4x-2x=12+25-1\Leftrightarrow3x=36\Leftrightarrow x=12\)
Vậy: \(S=\left\{12\right\}\)
e) \(PT\Leftrightarrow x+2x+3x-3x=19+5\Leftrightarrow3x=24\Leftrightarrow x=8\)
Vậy: \(S=\left\{8\right\}\)
a)3x-2=2x-3
=>x=-1
b)7-2x=22-3x
=>x=15
c)8x-3=5x+12
=>3x=15
=>x=5
d)x-12+4x=25+2x-1
=>3x=12
=>x=4
e)x+2x+3x-19=3x+5
=>3x=24
=>x=8
a)3x-2=2x-3
=>x=-1
b)7-2x=22-3x
=>x=15
c)8x-3=5x+12
=>3x=15
=>x=5
d)x-12+4x=25+2x-1
=>3x=36
=>x=12
e)x+2x+3x-19=3x+5
=>3x=24
=>x=8
Giải các bất phương trình sau:
a) \(7{x^2} - 19x - 6 \ge 0\)
b) \( - 6{x^2} + 11x > 10\)
c) \(3{x^2} - 4x + 7 > {x^2} + 2x + 1\)
d) \({x^2} - 10x + 25 \le 0\)
a) Xét tam thức \(f\left( x \right) = 7{x^2} - 19x - 6\) có \(\Delta = 529 > 0\), có hai nghiệm phân biệt \({x_1} = - \frac{2}{7},{x_2} = 3\) và có \(a = 7 > 0\)
Ta có bảng xét dấu như sau
Vậy nghiệm của bất phương trình là đoạn \(\left[ { - \frac{2}{7};3} \right]\)
b) \( - 6{x^2} + 11x > 10 \Leftrightarrow - 6{x^2} + 11x - 10 > 0\)
Xét tam thức \(f\left( x \right) = - 6{x^2} + 11x - 10\) có \(\Delta = - 119 < 0\)và có \(a = - 6 < 0\)
Ta có bảng xét dấu như sau
Vậy bất phương trình vô nghiệm
c) \(3{x^2} - 4x + 7 > {x^2} + 2x + 1 \Leftrightarrow 2{x^2} - 6x + 6 > 0\)
Xét tam thức \(f\left( x \right) = 2{x^2} - 6x + 6\) có \(\Delta = - 12 < 0\)và có \(a = 2 > 0\)
Ta có bảng xét dấu như sau
Vậy bất phương trình có vô số nghiệm
d) Xét tam thức \(f\left( x \right) = {x^2} - 10x + 25\) có \(\Delta = 0\), có nghiệm kép \({x_1} = {x_2} = 5\) và có \(a = 1 > 0\)
Ta có bảng xét dấu như sau
Vậy nghiệm của bất phương trình là \(x = 5\)
Giải các phương trình sau:
a) \({5^{2x - 1}} = 25\);
b) \({3^{x + 1}} = {9^{2x + 1}}\);
c) \({10^{1 - 2x}} = 100000\).
\(a,5^{2x-1}=25\\ \Leftrightarrow5^{2x-1}=5^2\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(b,3^{x+1}=9^{2x+1}\\ \Leftrightarrow3^{x+1}=3^{4x+2}\\ \Leftrightarrow x+1=4x+2\\ \Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\)
\(c,10^{1-2x}=100000\\ \Leftrightarrow10^{1-2x}=10^5\\ \Leftrightarrow1-2x=5\\ \Leftrightarrow2x=-4\\ \Leftrightarrow x=-2\)
Bài 1: Giải các phương trình sau:
a) 3x ^ 2 - 5x + 2 = 0
d) - 4x ^ 2 + 25 = 0
b) 11x - 2x ^ 2 = 0
e) sqrt(x ^ 2 - x + 9) = 2x + 1
c) x ^ 2 + 5x + 7 = 0
f) 6x ^ 4 - 7x ^ 2 + 1 = 0
a: =>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
b: =>2x^2=11
=>x^2=11/2
=>\(x=\pm\dfrac{\sqrt{22}}{2}\)
c: Δ=5^2-4*1*7=25-28=-3<0
=>PTVN
f: =>6x^4-6x^2-x^2+1=0
=>(x^2-1)(6x^2-1)=0
=>x^2=1 hoặc x^2=1/6
=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)
d: =>(5-2x)(5+2x)=0
=>x=5/2 hoặc x=-5/2
e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2
=>3x^2+5x-8=0 và x>=-1/2
=>3x^2+8x-3x-8=0 và x>=-1/2
=>(3x+8)(x-1)=0 và x>=-1/2
=>x=1