\(\dfrac{x}{-3}\) =\(\dfrac{y}{12}\) va x+y=18
Tìm số nguyên x, y biết:
\(a,\dfrac{x}{5}=\dfrac{-18}{10}\) b, \(\dfrac{6}{x-1}=\)\(\dfrac{-3}{7}\) c, \(\dfrac{y-3}{12}\)=\(\dfrac{3}{y-3}\) d, \(\dfrac{x}{25}\)=\(\dfrac{-5}{x^2}\)
\(a,\dfrac{x}{5}=\dfrac{-18}{10}\\ \Rightarrow x=-\dfrac{18}{10}.5\\ \Rightarrow x=-9\\ b,\dfrac{6}{x-1}=\dfrac{-3}{7}\\ \Rightarrow6.7=-3\left(x-1\right)\\ \Rightarrow42=-3x+3\\ \Rightarrow42+3x-3=0\\ \Rightarrow3x+39=0\\ \Rightarrow3x=-39\\ \Rightarrow x=-13\\ c,\dfrac{y-3}{12}=\dfrac{3}{y-3}\\ \Rightarrow\left(y-3\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}y-2=6\\y-2=-6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}y=8\\y=-4\end{matrix}\right.\)
\(d,\dfrac{x}{25}=\dfrac{-5}{x^2}\\ \Rightarrow x^3=-125\\ \Rightarrow x^3=\left(-5\right)^3\\ \Rightarrow x=-5\)
Giải hẹ phương trình:
\(\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\)
\(\dfrac{2x+6}{x-1}+\dfrac{3y+14}{y+3}=18\)
\(\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2x+6}{x-1}+\dfrac{3y+14}{y+3}=18\end{matrix}\right.\left(x\ne1;y\ne-3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2x-2+8}{x-1}+\dfrac{3y+9+5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2\left(x-1\right)}{x-1}+\dfrac{8}{x-1}+\dfrac{3\left(y+3\right)}{y+3}+\dfrac{5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\2+\dfrac{8}{x-1}+3+\dfrac{5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{8}{x-1}+\dfrac{5}{y+3}=13\end{matrix}\right.\) (I)
Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{x-1}\\v=\dfrac{1}{y+3}\end{matrix}\right.\)
Hệ (I) trở thành:
\(\Leftrightarrow\left\{{}\begin{matrix}12u+7v=19\\8u+5v=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}24u+14v=38\\24u+15v=39\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12u+7=19\\v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12u=12\\v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=1\end{matrix}\right.\)
Trả ẩn phụ:
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}=1\\\dfrac{1}{y+3}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y+3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\left(tm\right)\)
Vậy hệ pt có 1 cặp nghiệm duy nhất là: (2;-2)
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192x−2+8x−1+3y+9+5y+3=18⇔{12�−1+7�+3=192�−2+8�−1+3�+9+5�+3=18
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192+8x−1+3+5y+3=18⇔{12�−1+7�+3=192+8�−1+3+5�+3=18
⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩u=1x−1v=1y+3{�=1�−1�=1�+3
Hệ (I) trở thành:
⇔{12u+7v=198u+5v=13⇔{12�+7�=198�+5�=13
⇔{24u+14v=3824u+15v=39⇔{24�+14�=3824�+15�=39
⇔{12u+7=19v=1⇔{12�+7=19�=1
⇔{12u=12v=1⇔{12�=12�=1
⇔{u=1v=1⇔{�=1�=1
Trả ẩn phụ:
\(\dfrac{a}{b}=\dfrac{5}{7}\)va x+y =72
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}\)va a+b-c=21
\(\dfrac{12}{x}=\dfrac{3}{y}\)va x-y = 36
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\)va a+b-c=20
Giải:
a) Theo đề ra, ta có:
\(\dfrac{a}{b}=\dfrac{5}{7}\) và \(a+b=72\) (Sửa x+y =72)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}\)
\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)
\(\Rightarrow\dfrac{a}{5}=6\Rightarrow a=6.5=30\)
\(\Rightarrow\dfrac{b}{7}=6\Rightarrow b=6.7=42\)
Vậy ...
b) Theo đề ra, ta có:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}\) và \(a+b-c=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Leftrightarrow\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)
\(\Rightarrow\dfrac{a}{6}=3\Rightarrow a=3.6=18\)
\(\Rightarrow\dfrac{b}{4}=3\Rightarrow b=3.4=12\)
\(\Rightarrow\dfrac{c}{3}=3\Rightarrow a=3.3=9\)
Vậy ...
c) Theo đề ra, ta có:\(\dfrac{12}{x}=\dfrac{3}{y}\) và \(x-y=36\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}\)
\(\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)
\(\Rightarrow\dfrac{x}{12}=4\Rightarrow x=12.4=48\)
\(\Rightarrow\dfrac{y}{3}=4\Rightarrow x=3.4=12\)
Vậy ...
d) Theo đề ra, ta có:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\) và \(a+b-c=20\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Leftrightarrow\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}=\varnothing\)
Đề câu này sai nhé!
Chúc bạn học tốt!
a) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.6=30\\b=7.6=42\end{matrix}\right.\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.3=18\\b=4.3=12\\c=3.3=9\end{matrix}\right.\)
c) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.4=48\\y=3.4=12\end{matrix}\right.\)
d) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}\) (Vô lý)
=> Không thể làm
Tìm các số nguyên x,y biết:
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
b) \(\dfrac{24}{7x-3}=\dfrac{-4}{25}\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
d) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
f) \(y\dfrac{5}{y}=\dfrac{86}{y}\) ( \(x\dfrac{2}{5};y\dfrac{5}{y}\) là các hỗn số)
a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
⇒\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)
⇒\(2x+1=21\)
\(2x=21-1\)
\(2x=20\)
⇒\(x=10\)
Tìm số nguyên x, y biết:
a, \(\dfrac{-1}{5}\)≤ \(\dfrac{x}{8}\)≤ \(\dfrac{1}{4}\)
b, \(\dfrac{4}{x-6}\)= \(\dfrac{y}{24}\)= \(\dfrac{-12}{18}\)
c, \(\dfrac{x+46}{20}\)=x \(\dfrac{2}{5}\)
Giải:
a) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\)
\(\Rightarrow5x\in\left\{0;\pm5;10\right\}\)
\(\Rightarrow x\in\left\{0;\pm1;2\right\}\)
b) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\)
\(\Rightarrow-12.\left(x-6\right)=4.18\)
\(\Rightarrow-12x+72=72\)
\(\Rightarrow-12x=72-72\)
\(\Rightarrow-12x=0\)
\(\Rightarrow x=0:-12\)
\(\Rightarrow x=0\)
\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow y=\dfrac{-12.24}{18}=-16\)
c) \(\dfrac{x+46}{20}=x.\dfrac{2}{5}\)
\(\dfrac{x+46}{20}=\dfrac{2x}{5}\)
\(\Rightarrow5.\left(x+46\right)=2x.20\)
\(\Rightarrow5x+230=40x\)
\(\Rightarrow5x-40x=-230\)
\(\Rightarrow-35x=-230\)
\(\Rightarrow x=-230:-35\)
\(\Rightarrow x=\dfrac{46}{7}\)
Chúc bạn học tốt!
tim x, y, z biet :
a, \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\) va 2x + 3y - z = 186
b, \(\dfrac{x}{3}=\dfrac{y}{4}\) va \(\dfrac{y}{5}=\dfrac{z}{7}\) va 2x + 3y - z = 327
c, 2x = 3y = 5z va x + y - z = 95
d, \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) va xyz = 810
a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
⇒2x = 3.30 = 90 ⇒ x = 45
3y = 3.60 = 180 ⇒ y = 60
z = 3.28 = 84
Ý b) có gì đó sai sai ?
c)Ta có :
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒x = 5.15 = 75
y = 5.10 = 50
z = 5.6 = 30
d)Ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)
⇒ x = 2k ; y = 3k ; z = 5k
⇒ xyz = 2k.3k.5k = 30k3 = 810
⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15Tìm x, y biết :
a, \(\dfrac{x-1}{9}+\dfrac{1}{3}=\dfrac{1}{y+2}\)
\(b,\dfrac{3x+1}{18}+\dfrac{2y}{12}=\dfrac{2}{9}\) và x-y =1
b)3x+1/18+2y/12=2/9 và x-y=1
2(3x+1)/18x2+2y x 3/12x3=2x4/9x4
6x+2+6y=8
6x+6y=8-2=6
6(x+y)=6
x+y=6:6=1(1)
theo đề bài ta có:x-y=1 suy ra x=y+1
thay x=y+1 vào (1)
y+1+y=1
2y=1-1=0
y=0:2=0
x=0+1=1
xong rồi câu a) ko biết làm
a) <=> \(\dfrac{x-1}{9}+\dfrac{1}{3}=\dfrac{1}{y+2}\Leftrightarrow x-1+2=\dfrac{9}{y+2}\)
\(\Leftrightarrow x=\dfrac{9}{y+2}-1\) với mỗi giá trị của y khác -2 luôn tìm được x
từ và x-y =1 áp cho cả câu (a) thì
\(x-y=1=>x+1=y+2\)
\(y+2=\dfrac{9}{y+2}\Leftrightarrow\left\{{}\begin{matrix}y\ne-2\\\left(y+2\right)^2=9\end{matrix}\right.\)
y+2 = 3 => y = 1 =>x=2
y+2 =-3 => y =-5=> x=-4
Rút gọn các phân thức sau:
a) \(\dfrac{{3{x^2}y}}{{2x{y^5}}}\)
b) \(\dfrac{{3{x^2} - 3x}}{{x - 1}}\)
c) \(\dfrac{{a{b^2} - {a^2}b}}{{2{a^2} + a}}\)
d) \(\dfrac{{12\left( {{x^4} - 1} \right)}}{{18\left( {{x^2} - 1} \right)}}\)
a) \(\dfrac{3x^2y}{2xy^5}=\dfrac{3x}{2y^4}\)
b) \(\dfrac{3x^2-3x}{x-1}=\dfrac{3x\left(x-1\right)}{x-1}=3x\)
c) \(\dfrac{ab^2-a^2b}{2a^2+a}=\dfrac{ab\left(b-a\right)}{a\left(2a+1\right)}=\dfrac{b\left(b-a\right)}{2a+1}=\dfrac{b^2-ab}{2a+1}\)
d) \(\dfrac{12\left(x^4-1\right)}{18\left(x^2-1\right)}=\dfrac{2\left(x^2-1\right)\left(x^2+1\right)}{3\left(x^2-1\right)}=\dfrac{2\left(x^2+1\right)}{3}\)
`a, (3x^2y)/(2xy^5)`
`= (3x)/(2y^4)`
`b, (3x^2-3x)/(x-1)`
`= (3x(x-1))/(x-1)`
`= 3x`
`c, (ab^2-a^2b)/(2a^2+a)`
`= (b(a-b))/((2a+1))`
`d, (12(x^4-1))/(18(x^2-1)) = (2(x^2+1))/3`.
\(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\dfrac{4}{x-6}=\dfrac{y}{24}=-\dfrac{12}{18}\)
\(x-6=\dfrac{4\cdot18}{-12}=-6\)
\(\Rightarrow x=0\)
\(y=\dfrac{24\cdot\left(-12\right)}{18}=-16\)
`4/(x-6)=(-12)/18`
`=>4/(x-6)=(-2)/3`
`=>2/(x-6)=-1/3`
`=>x-6=-6`
`=>x=0`
`y/24=(-12)/48=(-2)/3`
`=>3y=24=>y=8`
Vậy `x=0,y=8`
`4/(x-6)=y/24=-12/18=-2/3`
` 4/(x-6)=-2/3`
`4/(x-6)=4/(-6)`
`x-6=-6`
`x=0`
`y/24 = -2/3`
`y/24 = -16/24`
`y=-16`