Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Như Quỳnh Phạm
Xem chi tiết
Edogawa Conan
6 tháng 9 2021 lúc 22:49

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
6 tháng 9 2021 lúc 22:51

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Edogawa Conan
6 tháng 9 2021 lúc 22:51

d)3x2+3y2+3xy-3x+3y+3=0

⇔ 6x2+6y2+6xy-6x+6y+6=0

⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thịnh Nguyễn
Xem chi tiết
ILoveMath
25 tháng 8 2021 lúc 8:27

bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được

Hoàng Phương Anh
Xem chi tiết
Tuan Anh Nguyen
Xem chi tiết
Lê Trọng Chương
Xem chi tiết
Phương Thảo
Xem chi tiết
Lân Dũng
Xem chi tiết
Phạm Thị Thùy Linh
14 tháng 7 2019 lúc 12:42

\(4x^2+4xy+2y^2-4x-4y+2=0\)

\(\Rightarrow4x^2+4xy+y^2-4x-2y+1+y^2-2y+1=0\)

\(\Rightarrow\left(2x+1\right)^2-2\left(2x+1\right)+1+\left(y-1\right)^2=0\)

\(\Rightarrow\left(2x+1-1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow4x^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}4x^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)

Cô Gái Mùa Đông
Xem chi tiết
Đậu Thị Khánh Huyền
Xem chi tiết
Phương An
9 tháng 8 2017 lúc 8:33

\(x^2+y^2=2011\) (1)

Nhận xét:

\(x^2-\text{và}-y^2-chia-cho-4-\text{chỉ}-\text{có}-\text{thể}-\text{dư}-0-\text{hoặc}-1\)

\(\Rightarrow x^2+y^2-chia-cho-4-\text{chỉ}-\text{có}-\text{thể}-\text{dư}-0-\text{hoặc}-1-\text{hoặc}-2\)

\(\text{mà}-2011-chia-cho-4-\text{dư}-3\)

=> Pt (1) vô no nguyên.

\(x^2+x-2y-4y^2=-7\) (2)

\(\Leftrightarrow4x^2+4x-8y-16y^2=-28\)

\(\Leftrightarrow\left(4x^2+4x+1\right)-\left(16y^2+8y+1\right)=-28\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(4y+1\right)^2=-28\)

\(\Leftrightarrow\left(2x+1-4y-1\right)\left(2x+1+4y+1\right)=-28\)

\(\Leftrightarrow\left(x-2y\right)\left(x+2y+1\right)=-28\)

Xét các trường hợp có thể xảy ra, và tìm được các no thoả mãn pt (2)