Điều kiện cần và đủ để z là một số thực là:
A. z = z
B. z = z
C. z = - z
D. z = - z
Điều kiện cần và đủ để z là một số thực là:
A. z = z ¯ .
B. z = z .
C. z = − z ¯ .
D. z = − z .
Cho hai số phức z = a + bi và z’ = a’ + b’i . Tìm điều kiện giữa a; b; a’; b’ để z + z’ là một số thuần ảo.
Chọn D.
Ta có: z + z’ = (a + a’) + (b + b’)i là số thuần ảo
Gọi S là tập hợp các số phức z có phần thực và phần ảo đều là các số nguyên đồng thời thoả mãn hai điều kiện: z - 3 - 4 i ≤ 2 và z + z ¯ ≤ z - z ¯ . Số phần tử của tập S bằng
A. 11.
B. 12.
C. 13.
D. 10.
Có bao nhiêu số phức có phần thực và phần ảo là các số nguyên, đồng thời thỏa các điều kiện z + 4 i + z - 6 i = z + i + z - 3 i và z ≤ 2019 ?
A. 2019
B. 7857
C. 4030
D. 4032
Trong các số phức z thỏa mãn điều kiện z − 2 − 4 i = z − 2 i . Số phức z có môđun nhỏ nhất có tổng phần thực và phần ảo là
A. 0.
B. 4.
C. 3.
D. 2.
Trong các số phức z thỏa mãn điều kiện z - 2 - 4 i = z - 2 i Số phức z có môđun nhỏ nhất có tổng phần thực và phần ảo là
A. 0.
B. 4.
C. 3.
D. 2.
Tìm số phức z thỏa mãn hai điều kiện:| z + 1 - 2i| = | z ¯ + 3 + 4i| và z - 2 i z ¯ + i là một số thuần ảo.
Chọn B.
Giả sử z = x + yi. Theo bài ra ta có: |x + 1 + (y – 2)i| = |x + 3 + (4 – y)i|
hay ( x + 1) 2+ ( y - 2) 2 = ( x + 3) 2 + ( y - 4) 2
suy ra y = x + 5
Số phức
w là một số ảo
Vậy
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện:
a) Phần thực của z bằng phần ảo của nó ;
b) Phần thực của z là số đối của phần ảo của nó ;
c) Phần ảo của z bằng hai lần phần thực của nó cộng với 1;
d) Modun của z bằng 1, phần thực của z không âm.
a) Đường phân giác của góc phần tư thứ nhất và góc pần tư thứ ba.
b) Đường phân giác của góc phần tư thứ hai và góc phần tư thứ tư.
c) Đường thẳng y = 2x + 1
d) Nửa đường tròn tâm O bán kính bằng 1, nằm bên phải trục Oy.
Có tất cả bao nhiêu số thực m để có duy nhất một số phức z thoả mãn đồng thời hai điều kiện: z - 1 + i = m và z - 1 - 13 i ≤ 13
A. 2.
B. 3.
C. 4.
D. 1.