Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thiên Ân
Xem chi tiết
Thanh Tùng DZ
16 tháng 12 2017 lúc 21:14

a) với hàm số y = f ( x ) = 3x thì :

f ( -1 ) = -3

f( 0 ) = 0

f ( 1/2 ) = 3/2

f(1) = 3

b) cho x = 1 \(\Rightarrow\)y = 3 \(\Rightarrow\)A ( 1 ; 3 )

Đồ thị hàm số y = 3x là đường thẳng đi qua góc tọa độ O ( 0 ; 0 ) và A ( 1 ; 3 )

y x O 1 3 A y = 3x

Nguyễn Lưu Luyến
16 tháng 12 2017 lúc 21:14

a) với hàm số y = f ( x ) = 3x thì :

f ( -1 ) = -3

f( 0 ) = 0

f ( 1/2 ) = 3/2

f(1) = 3

ST
16 tháng 12 2017 lúc 21:22

a, y = f(-1) = 3.(-1) = -3

y=f(0)=3.0=0

y=f(1/2)=3.1/2=3/2

y=f(1)=3.1=3

b, Đồ thị hàm số y=3x là 1 đường thẳng đi qua gốc tọa độ và điểm A(1;3)

O y x 3 2 1 1 -1 -2 1 2 -2 -1 A

Nguyễn Ngọc Phương Linh
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
quachtxuanhong23
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
2611
18 tháng 11 2023 lúc 21:18

`a)TXĐ:R\\{1;1/3}`

`y'=[-4(6x-4)]/[(3x^2-4x+1)^5]`

`b)TXĐ:R`

`y'=2x. 3^[x^2-1] ln 3-e^[-x+1]`

`c)TXĐ: (4;+oo)`

`y'=[2x-4]/[x^2-4x]+2/[(2x-1).ln 3]`

`d)TXĐ:(0;+oo)`

`y'=ln x+2/[(x+1)^2].2^[[x-1]/[x+1]].ln 2`

`e)TXĐ:(-oo;-1)uu(1;+oo)`

`y'=-7x^[-8]-[2x]/[x^2-1]`

Akai Haruma
18 tháng 11 2023 lúc 21:27

Lời giải:
a.

$y'=-4(3x^2-4x+1)^{-5}(3x^2-4x+1)'$

$=-4(3x^2-4x+1)^{-5}(6x-4)$

$=-8(3x-2)(3x^2-4x+1)^{-5}$

b.

$y'=(3^{x^2-1})'+(e^{-x+1})'$

$=(x^2-1)'3^{x^2-1}\ln 3 + (-x+1)'e^{-x+1}$

$=2x.3^{x^2-1}.\ln 3 -e^{-x+1}$

c.

$y'=\frac{(x^2-4x)'}{x^2-4x}+\frac{(2x-1)'}{(2x-1)\ln 3}$

$=\frac{2x-4}{x^2-4x}+\frac{2}{(2x-1)\ln 3}$

d.

\(y'=(x\ln x)'+(2^{\frac{x-1}{x+1}})'=x(\ln x)'+x'\ln x+(\frac{x-1}{x+1})'.2^{\frac{x-1}{x+1}}\ln 2\)

\(=x.\frac{1}{x}+\ln x+\frac{2}{(x+1)^2}.2^{\frac{x-1}{x+1}}\ln 2\\ =1+\ln x+\frac{2^{\frac{2x}{x+1}}\ln 2}{(x+1)^2}\)

e.

\(y'=-7x^{-8}-\frac{(x^2-1)'}{x^2-1}=-7x^{-8}-\frac{2x}{x^2-1}\)

Lục Kim Duy
Xem chi tiết
Lê Mạnh Hùng
24 tháng 12 2016 lúc 15:21

f(1/2)=3*(1/2)^2+1=3*1/4+1=3/4+1=7/4

Nguyễn Anh Dũng An
Xem chi tiết
Duy Nguyễn Hoàn
Xem chi tiết
Phan Huy Bằng
12 tháng 1 2022 lúc 15:04

4/3

fox2229
12 tháng 1 2022 lúc 15:05

f(2/9)= -3 . 2/9 +2=-2/3+2=4/3

Phạm Trần Phát
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 10:48

a: \(y=\left(2x^2-x+1\right)^{\dfrac{1}{3}}\)

=>\(y'=\dfrac{1}{3}\left(2x^2-x+1\right)^{\dfrac{1}{3}-1}\cdot\left(2x^2-x+1\right)'\)

\(=\dfrac{1}{3}\cdot\left(4x-1\right)\left(2x^2-x+1\right)^{-\dfrac{2}{3}}\)

b: \(y=\left(3x+1\right)^{\Omega}\)

=>\(y'=\Omega\cdot\left(3x+1\right)'\cdot\left(3x+1\right)^{\Omega-1}\)

=>\(y'=3\Omega\left(3x+1\right)^{\Omega-1}\)

c: \(y=\sqrt[3]{\dfrac{1}{x-1}}\)

=>\(y'=\dfrac{\left(\dfrac{1}{x-1}\right)'}{3\cdot\sqrt[3]{\left(\dfrac{1}{x-1}\right)^2}}\)

\(=\dfrac{\dfrac{1'\left(x-1\right)-\left(x-1\right)'\cdot1}{\left(x-1\right)^2}}{\dfrac{3}{\sqrt[3]{\left(x-1\right)^2}}}\)

\(=\dfrac{-x}{\left(x-1\right)^2}\cdot\dfrac{\sqrt[3]{\left(x-1\right)^2}}{3}\)

\(=\dfrac{-x}{\sqrt[3]{\left(x-1\right)^4}\cdot3}\)

d: \(y=log_3\left(\dfrac{x+1}{x-1}\right)\)

\(\Leftrightarrow y'=\dfrac{\left(\dfrac{x+1}{x-1}\right)'}{\dfrac{x+1}{x-1}\cdot ln3}\)

\(\Leftrightarrow y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}:\dfrac{ln3\left(x+1\right)}{x-1}\)

\(\Leftrightarrow y'=\dfrac{x-1-x-1}{\left(x-1\right)^2}\cdot\dfrac{x-1}{ln3\cdot\left(x+1\right)}\)

\(\Leftrightarrow y'=\dfrac{-2}{\left(x-1\right)\cdot\left(x+1\right)\cdot ln3}\)

e: \(y=3^{x^2}\)

=>\(y'=\left(x^2\right)'\cdot ln3\cdot3^{x^2}=2x\cdot ln3\cdot3^{x^2}\)

f: \(y=\left(\dfrac{1}{2}\right)^{x^2-1}\)

=>\(y'=\left(x^2-1\right)'\cdot ln\left(\dfrac{1}{2}\right)\cdot\left(\dfrac{1}{2}\right)^{x^2-1}=2x\cdot ln\left(\dfrac{1}{2}\right)\cdot\left(\dfrac{1}{2}\right)^{x^2-1}\)

h: \(y=\left(x+1\right)\cdot e^{cosx}\)

=>\(y'=\left(x+1\right)'\cdot e^{cosx}+\left(x+1\right)\cdot\left(e^{cosx}\right)'\)

=>\(y'=e^{cosx}+\left(x+1\right)\cdot\left(cosx\right)'\cdot e^u\)

\(=e^{cosx}+\left(x+1\right)\cdot\left(-sinx\right)\cdot e^u\)

Nguyễn Đức Trí
25 tháng 11 2023 lúc 11:07

a) \(y=\left(2x^2-x+1\right)^{\dfrac{1}{3}}\)

\(\Rightarrow y'=\dfrac{1}{3}.\left(2x^2-x+1\right)^{\dfrac{1}{3}-1}.\left(4x-1\right)\)

\(\Rightarrow y'=\dfrac{1}{3}.\left(2x^2-x+1\right)^{-\dfrac{2}{3}}.\left(4x-1\right)\)

b) \(y=\left(3x+1\right)^{\pi}\)

\(\Rightarrow y'=\pi.\left(3x+1\right)^{\pi-1}.3=3\pi.\left(3x+1\right)^{\pi-1}\)

c) \(y=\sqrt[3]{\dfrac{1}{x-1}}\)

\(\Rightarrow y'=\dfrac{\left(x-1\right)^{-1-1}}{3\sqrt[3]{\left(\dfrac{1}{x-1}\right)^{3-1}}}=\dfrac{\left(x-1\right)^{-2}}{3\sqrt[3]{\left(\dfrac{1}{x-1}\right)^2}}=\dfrac{1}{3.\sqrt[]{x-1}.\sqrt[3]{\left(\dfrac{1}{x-1}\right)^2}}\)

\(\Rightarrow y'=\dfrac{1}{3\left(x-1\right)^{\dfrac{1}{2}}.\left(x-1\right)^{\dfrac{2}{3}}}=\dfrac{1}{3\left(x-1\right)^{\dfrac{7}{6}}}=\dfrac{1}{3\sqrt[6]{\left(x-1\right)^7}}\)

d) \(y=\log_3\left(\dfrac{x+1}{x-1}\right)\)

\(\Rightarrow y'=\dfrac{\dfrac{1-\left(-1\right)}{\left(x-1\right)^2}}{\dfrac{x+1}{x-1}.\ln3}=\dfrac{2}{\left(x+1\right)\left(x-1\right).\ln3}\)

e) \(y=3^{x^2}\)

\(\Rightarrow y'=3^{x^2}.ln3.2x=2x.3^{x^2}.ln3\)

f) \(y=\left(\dfrac{1}{2}\right)^{x^2-1}\)

\(\Rightarrow y'=\left(\dfrac{1}{2}\right)^{x^2-1}.ln\dfrac{1}{2}.2x=2x.\left(\dfrac{1}{2}\right)^{x^2-1}.ln\dfrac{1}{2}\)

Các bài còn lại bạn tự làm nhé!

phan thị minh anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 1:07

a: ĐKXĐ: (x+4)(x-1)<>0

hay \(x\notin\left\{-4;1\right\}\)

b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)

\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)

=>y<=3