Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Hoàng
Xem chi tiết
Nguyễn Danh Hoành
16 tháng 12 2021 lúc 20:25

undefined

Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 20:25

1: Xét tứ giác AFHE có

\(\widehat{AFH}=\widehat{AEH}=\widehat{FAE}=90^0\)

Do đó: AFHE là hình chữ nhật

Hữu Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 23:23

a: Ta có: H và M đối xứng nhau qua AB

nên AB là đường trung trực của HM

Suy ra: AB\(\perp\)HM và E là trung điểm của HM

Ta có: H và N đối xứng nhau qua AC

nên AC là đường trung trực của HN

Suy ra: AC\(\perp\)HN tại F và F là trung điểm của NH

Xét tứ giác AEHF có

\(\widehat{FAE}=\widehat{AEH}=\widehat{AFH}=90^0\)

Do đó: AEHF là hình chữ nhật

Nguyễn Ngọc Anh
Xem chi tiết
Kii
Xem chi tiết
fcfgđsfđ
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 11 2023 lúc 21:29

Sửa đề: K là điểm đối xứng của M qua AC

a: M đối xứng H qua AB

=>AB là đường trung trực của MH

=>AB vuông góc MH tại trung điểm của MH

=>AB vuông góc MH tại E và E là trung điểm của MH

M đối xứng K qua AC

=>AC là đường trung trực của MK

=>AC vuông góc với MK tại trung điểm của MK

=>AC vuông góc với MK tại F và F là trung điểm của MK

ME\(\perp\)AB

AC\(\perp\)AB

Do đó: ME//AC

MF\(\perp\)AC

AB\(\perp\)AC

Do đó: MF//AB

Xét ΔABC có

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

=>AEMF là hình chữ nhật

Xét tứ giác AMBH có

E là trung điểm của AB và MH

Do đó: AMBH là hình bình hành

Hình bình hành AMBH có MH\(\perp\)AB

nên AMBH là hình thoi

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

=>AMCK là hình bình hành

Hình bình hành AMCK có AC\(\perp\)MK

nên AMCK là hình thoi

b: AMBH là hình thoi

=>AB là phân giác của góc MAH

=>\(\widehat{MAH}=2\cdot\widehat{BAM}\)

AMCK là hình thoi

=>AC là phân giác của góc MAK

=>\(\widehat{MAK}=2\cdot\widehat{MAC}\)

\(\widehat{MAH}+\widehat{MAK}=\widehat{KAH}\)

=>\(\widehat{KAH}=2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)\)

=>\(\widehat{KAH}=2\cdot90^0=180^0\)

Do đó: K,A,H thẳng hàng

mà AH=AK(=AM)

nên A là trung điểm của HK

c: Để hình chữ nhật AEMF trở thành hình vuông thì AE=AF

mà \(AE=\dfrac{AB}{2};AF=\dfrac{AC}{2}\)

nên AB=AC

Duyên Lê
Xem chi tiết
ko có tên
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 22:41

Chọn C

loveyou
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 22:39

Chọn C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2018 lúc 5:16

a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)

Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).

b) Áp dụng tính chất đối xứng trục ta có:

A H = A M , A 1 ^ = A 2 ^  và A K = A M , A 3 ^ = A 4 ^ .

Mà A 2 ^ + A 3 ^  = 900 Þ H, A, K thẳng hàng.

Lại có AH = AM = AK Þ H đối xứng với K qua A.

c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^  mà AM là đường trung tuyến.

Þ DABC vuông cân tại A.

truc phan
Xem chi tiết
nguyễn ngọc lan
2 tháng 12 2017 lúc 21:59
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH => AH=AD (1) Vì E đối xứng với H qua AC nên AC là đường trung trực của HE => AH=AE (2) Từ (1) và (2) suy ra AD=AE (3) Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o do đó góc DAB+góc BAH+góc HAC+góc CAE=180o => D, A, E thẳng hàng (4) từ (3) và (4) suy ra D và E đx với nhau qua A. b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE => tam giác DHE vuông tại H. c) Tam giác ADB=tam giác AHB (c-c-c) suy ra góc ADB=góc AHB=90o tương tự ta có : góc AEC=90o suy ra BD//CE (cùng vuông góc với DE) nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE => BAEC là hình thang vuông. Đúng 11 Sai 0 Vũ Khánh Linh 12/12/2015 lúc 00:12 Báo cáo sai phạm a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH => AH=AD (1) Vì E đối xứng với H qua AC nên AC là đường trung trực của HE => AH=AE (2) Từ (1) và (2) suy ra AD=AE (3) Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o => D, A, E thẳng hàng (4) Từ (3) và (4) suy ra D và E đx với nhau qua A. b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE => tam giác DHE vuông tại H. c) Tam giác ADB=tam giác AHB (c-c-c) suy ra góc ADB=góc AHB=90o tương tự ta có góc AEC=90o => BD//CE (cùng vuông góc với DE) nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE => BDEC là hình thang vuông. Đúng 1 Sai 0 Đậu Minh Thắng 09/08/2017 lúc 08:34 Báo cáo sai phạm V éo có hình Đúng 0 Sai 0 Vũ Quang Huy 05/08/2016 lúc 11:15 Báo cáo sai phạm cảm ơn bạn Vũ Khánh Linh nhé Đúng 0 Sai 0 Phan Trung Hiếu 03/08/2016 lúc 10:15 Báo cáo sai phạm có thể vẽ hình ko ak? Đúng 0 Sai 0 Thiên Hoàng Minh Trị 28/07/2016 lúc 09:57 o sai phạm có thể vẽ hình ra được không ak?? Đúng 0 Sai 0