Viết phương trình tiếp tuyến của đồ thị hàm số y = - x 3 + 3 x + 1 tại giao điểm của đồ thị với trục tung
A. y = 1
B. y = 3x - 1
C. y = 3x + 1
D. y = - 3x + 1
Viết phương trình tiếp tuyến của đồ thị hàm số:
\(y=\dfrac{-x+2}{x+1}\)
a, Tại giao điểm của đồ thị vs trục hoành
b, Tại giao điểm của đồ thị vs trục tung
c, Hệ số góc \(k=-3\)
Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm
Ta có: y' \(=\dfrac{-3}{\left(x+1\right)^2}\)
k=f'\(\left(x_0\right)\)\(\Rightarrow-3=\dfrac{-3}{\left(x_0+1\right)^2}\Leftrightarrow\left(x_0+1\right)^2=1\)\(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-2\end{matrix}\right.\)
Với \(x_0=0\) ta có pt tiếp tuyến:
\(d:3x+y-2=0\)
Với \(x_0=-2\) ta có pt tiếp tuyến:
\(d:3x+y+10=0\)
a: Tọa độ giao điểm của (d) với trục Ox là:
y=0 và (-x+2)=0
=>x=2 và y=0
\(y'=\dfrac{\left(-x+2\right)'\left(x+1\right)-\left(-x+2\right)\left(x+1\right)'}{\left(x+1\right)^2}\)
\(=\dfrac{\left(-\left(x+1\right)+x-2\right)}{\left(x+1\right)^2}=\dfrac{-3}{\left(x+1\right)^2}\)
Khi x=2 thì y'=-3/(2+1)^2=-3/9=-1/3
y-f(x0)=f'(x0)(x-x0)
=>y-0=-1/3(x-2)
=>y=-1/3x+2/3
b: Tọa độ giao của (d) với trục Oy là;
x=0 và y=(-0+2)/(0+1)=2
Khi x=0 thì \(y'=\dfrac{-3}{\left(0+1\right)^2}=-3\)
y-f(x0)=f'(x0)(x-x0)
=>y-2=-3(x-0)
=>y=-3x+2
Cho đồ thị hàm số C : y = − 2 x + 3 x − 1 . Viết phương trình tiếp tuyến của đồ thị (C) tại
giao điểm của (C) và đường thẳng y = x − 3 .
A. y = − x + 3 v à y = − x − 1
B. y = − x − 3 v à y = − x + 1
C. y = x − 3 v à y = x + 1
D. y = − x + 3 v à y = − x + 1
Đáp án B
Tọa độ giao điểm của (C) và đường thẳng y = x − 3 là nghiệm của hệ:
y = − 2 x + 3 x − 1 y = x − 3 ⇔ x = 2 y = − 1 x = 0 y = − 3 ⇒ A ( 2 ; − 1 ) B ( 0 ; − 3 )
y ' = − 1 x − 1 2
Phương trình tiếp tuyến với ( C) tại A ( 2 ; − 1 ) là:
y = − 1 2 − 1 2 ( x − 2 ) − 1 = − x + 1
Phương trình tiếp tuyến với ( C) tại B ( 0 ; − 3 ) là:
y = − 1 0 − 1 2 ( x − 0 ) − 3 = − x − 3
Cho hàm số y = x + 2 x + 1 có đồ thị (C). Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị (C) với trục tung là
A. y = x – 2
B. y = –x + 2
C. y = –x + 1
D. y = –x –2
Cho hàm số y=x lnx có đồ thị (C). Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị với đường thẳng d:x-1=0 là
A.x-y+1=0
B.x+y-1=0
C.x-y=0
D.x-y-1=0
Cho hàm số y = 2 2 - x
Tìm giao điểm của (C ) và đồ thị hàm số y= x 2 +1 . Viết phương trình tiếp tuyến của (C ) tại mỗi giao điểm.
Phương trình hoành độ giao điểm của hai đường cong :
Phương trình (*) tương đương : 2 = 2x2 + 2 – x3 – x
⇔ x3 – 2x2 + x = 0 ( đều thỏa mãn khác 2).
Vậy tọa độ giao điểm của hai đường cong là A(0 ; 1) và B(1 ; 2)
+ Phương trình tiếp tuyến tại A là
+ Phương trình tiếp tuyến tại điểm B(1 ; 2) là :
y = y’(1). (x – 1) + 2 = 2(x – 1)+ 2
Hay y = 2x
Viết phương trình tiếp tuyến của đồ thị hàm số y = − x 3 + 3 x + 1 tại giao điểm của đồ thị với trục tung.
A. y = 1
B. y = 3x - 1
C. y = 3x + 1
D. y = -3x + 1
Viết phương trình tiếp tuyến của đồ thị hàm số y = - x 3 + 3 x + 1 tại giao điểm của đồ thị với trục tung
A. y = 1
B. y = 3x - 1
C. y = 3x + 1
D. y= -3x +1
a) tìm hệ số góc của tiếp tuyến của đồ thị hàm số y=-x^3+3x-2 (c) tại điểm có hoành độ -3
b) viết phương trình tiếp tuyến của đồ thị hàm số (c) trên tại điểm ( ứng với tiếp điểm ) có hoành độ -3
Cho hàm số y = x − 1 x + 2 . Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị với trục Ox là
A. y = x + 3 y − 1 = 0
B. y = x + 3 y + 1 = 0
C. y = x − 3 y + 1 = 0
D. y = x − 3 y − 1 = 0
Đáp án D.
Có x − 1 x + 2 = 0 ⇔ x = 1. Có y ' = 3 x + 2 2
Giao với đồ thị hàm số với trục Ox là 1 ; 0 .
Phương trình tiếp tuyến tại 1 ; 0 . có phương trình là:
y = y ' 1 x − 1 + y 1 = 1 3 x − 1 ⇔ x − 3 y − 1 = 0