Chứng tỏ rằng là số thực khi và chỉ khi z là một số thực khác – 1.
Chứng tỏ rằng z - 1 z + 1 là số thực khi và chỉ khi z là một số thực khác – 1.
Hiển nhiên nếu z
∈
R, z
≠
−1 thì
Ngược lại, nếu
thì z – 1 = az + a và a ≠ 1
Suy ra (1 − a)z = a + 1
và hiển nhiên z ≠ −1.
Chứng tỏ rằng \(\dfrac{z-1}{z+1}\) là số thực khi và chỉ khi \(z\) là một số thực khác -1 ?
Hiển nhiên nếu \(z\in\mathbb{R},z\ne-1\) thì \(\dfrac{z-1}{z+1}\in\mathbb{R}\)
Ngược lại, nếu \(\dfrac{z-1}{z+1}=a\in\mathbb{R}\) thì \(z-1=az+a\) và \(a\ne1\)
Suy ra \(\left(1-a\right)z=a+1\Rightarrow\)\(z=\dfrac{a+1}{1-a}\in\mathbb{R}\) và hiển nhiên \(z\ne-1\)
a) Cho số phức z. Chứng minh rằng z là một số thực khi và chỉ khi \(z=\overline{z}\)
b) Chứng tỏ rằng số phúc sau là một số thực :
\(z=-\dfrac{3+2i\sqrt{3}}{\sqrt{2}+3i}+\dfrac{-3+2i\sqrt{3}}{\sqrt{2}-3i}\)
Cho số phức z = a + b i a , b ∈ ℝ . Xét các mệnh đề sau :
(1) z là số thực khi và chỉ khi a ≠ 0 , b = 0
(2) z là số thuần ảo khi và chỉ khi a = 0 , b ≠ 0
(3) z vừa là số thực vừa là số thuần ảo khi và chỉ khi a = 0, b = 0
Số mệnh đề đúng là ?
A. 2.
B. 0.
C. 3.
D. 1.
Cho số phức z = a + b i ( a , b ∈ R ) . Xét các mệnh đề sau :
(1) z là số thực khi và chỉ khi a ≠ 0 , b = 0
(2) z là số thuần ảo khi và chỉ khi a = 0 , b ≠ 0
(3) z vừa là số thực vừa là số thuần ảo khi và chỉ khi a = 0, b = 0
Số mệnh đề đúng là ?
A. 2
B. 0
C. 3
D. 1
một học sinh khi chia một số cho 12 thấy dư là 8. Khi chia chính số ấy cho 3 thấy dư 1.Chứng tỏ rằng học sinh ấy thực hiện sai ít nhất một trong hai phép tính trên
1) Bình phương của 1 số tự nhiên là một số có 5 chữ số gồm các chữ số 1,2,6,7,. Tìm số này, biết rằng số đó nhỏ hơn 200 và chữ số hàng đơn vị khác 4, khác 6 và khác 1
2) Chứng tỏ rằng 1 số tự nhiên có 2 chữ số chia hết cho 13 khi và chỉ khi tổng của chữ số hành chục với 4 lần chữ số hàng đơn vị chia hết cho 13
Số phức z=a+bi vừa là số thực vừa là số thuần ảo khi và chỉ khi
A. .
B. .
C..
D. .
Số phức z = a + b i a , b ∈ R vừa là số thực vừa là số thuần ảo khi và chỉ khi
A. a ≠ 0 , b = 0
B. a = 0 , b ≠ 0
C. a = b = 0
D. a 2 + b 2 > 0
Số phức z = a + bi (a, b ∈ R) vừa là số thực vừa là số thuần ảo khi và chỉ khi phần thực bằng 0 và phần ảo bằng 0.
Chọn đáp án C.