Cho hình trụ có bán kính r, trục OO' = 2r và mặt cầu đường kính OO'.
Hãy so sánh thể tích khối trụ và thể tích khối cầu được tạo nên bởi hình trụ và mặt cầu đã cho.
Cho hình trụ có bán kính đáy r, trục OO' = 2r và mặt cầu đường kính OO'
a) Hãy so sánh diện tích mặt cầu và diện tích xung quanh của hình trụ đó ?
b) Hãy so sánh thể tích khối trụ và thể tích khối cầu được tạo nên bởi hình trụ và mặt cầu đã cho ?
a, Diện tích của mặt cầu là: \(S_c=4\pi r^2\)
Diện tích xung quanh của mặt trụ là: \(S_t=2\pi rh=4\pi r^2\)
Vậy Sc = St
b, Thể tích của khối trụ là: \(V_t=\pi r^2h=2\pi r^2\)
Thể tích của khối cầu là: \(V_c=\dfrac{4}{3}\pi r^2\)
Vậy \(V_t=\dfrac{3}{2}V_c\)
Cho hình trụ có bán kính r, trục OO' = 2r và mặt cầu đường kính OO'.
Hãy so sánh diện tích mặt cầu và diện tích xung quanh của hình trụ.
Do trục OO’= 2r nên chiều cao của khối trụ là h = 2r.
Mặt cầu có đường kính là OO’= 2r nên bán kính của mặt cầu là: R = r
Một hình trụ có trục OO’ chứa tâm của một mặt cầu bán kính R, các đường tròn đáy của hình trụ đều thuộc mặt cầu trên, đường cao của hình trụ đứng bằng R. Tính thể tích V của khối trụ.
A. V = 3 π R 3 4
B. V = π R 3
C. V = π R 3 4
D. V = π R 3 3
Hình trụ tròn xoay có bán kính đáy bằng r, có chiều cao bằng 2r và có trục là OO'
a) Chứng minh rằng mặt cầu đường kính OO' tiếp xúc với hai mặt đáy của hình trụ và tiếp xúc với tất cả các đường sinh của mặt trụ
b) Cắt hình trụ bởi một mặt phẳng song song với trục OO' và cách trục một khoảng bằng \(\dfrac{r}{2}\). Tính diện tích thiết diện thu được
c) Thiết diện nói trên cắt mặt cầu đường kính OO' theo thiết diện là một đường tròn. Tính bán kính của đường tròn đó
Cho hình trụ có bán kính đáy r, gọi O và O' là tâm của hai đường tròn đáy với OO'=2r. Một mặt cầu tiếp xúc với hai đáy của hình trụ tại O và O'. Gọi V C và V T lần lượt là thể tích của khối cầu và khối trụ. Khi đó V C V T bằng
Cho hình trụ (T) có bán kính đáy R, trục OO’ bằng 2R và mặt cầu (S) có đường kính là OO’. Gọi S1 là diện tích mặt cẩu (S), S2 là diện tích toàn phần của hình trụ (T). Khi đó S 1 s 2 bằng?
A.2/3
B. 1/6
C. 1
D. 3/2
Hình trụ bán kính đáy r. Gọi O và O' là tâm của hai đường tròn đáy với OO' = 2r. Một mặt cầu tiếp xúc với hai đáy của hình trụ lại O và O'. Gọi V C và V T lần lượt là thể tích của khối cầu và khối trụ. Khi đó là
A. 1 2
B. 3 4
C. 2 3
D. 3 5
Chọn đáp án C.
Ta có: Vì mặt cầu tiếp xúc với 2 đường tròn của hình trụ.
Nên bán kính mặt cầu bằng O O ' 2 = r
Thể tích của khối cầu là
Thể tích của khối trụ là
Khi đó V C V T = 2 3
Hình trụ bán kính đáy r. Gọi O và là tâm của hai đường tròn đáy với O O ' = 2 r . Một mặt cầu tiếp xúc với hai đáy của hình trụ lại O và . Gọi V c và V r lần lượt là thể tích của khối cầu và khối trụ. Khi đó V c V r là
A. 1 2
B. 3 4
C. 2 3
D. 3 5
Hình trụ có bán kính đáy r. Gọi O và O' là tâm của hai đường tròn đáy, với O O ' = 2 r . Một mặt cầu (S ) tiếp xúc với hai đáy hình trụ tại O và O'. Gọi VC và VT lần lượt là thể tích khối cầu và khối trụ tương ứng. Khi đó V C V T bằng:
A. 1/2
B. 3/4
C. 2/3
D. 3/5
Đáp án C
Bán kính hình cầu là R = r
Ta có V C V T = 4 3 π r 3 π r 2 .2 r = 2 3