Cho hình bình hành, gọi M là trung điểm của AD, gọi N là trung điểm của BC
a/ chứng minh tứ giác BMDN là hình bình hành
b/ so sánh BM và DN
giúp với ạ :,)
Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AD và BC. Đường chéo AC cắt các đoạn thẳng BM và DN theo thứ tự tại E và K.
a) Chứng minh tứ giác BMDN là hình bình hành.
b) Chứng minh AE = EK = KC.
c) Gọi I là trung điểm của BE. Chứng minh tứ giác AIKM là hình bình hành
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
cho hình bình hành ABCD . Gọi O là giao điểm của 2 đường chéo và M,N lần lượt là trung điểm của AD , BC . BM và DN cắt AC lần lượt tại E , F.
a/Tứ giác BMDN là hình gì ? Vì sao ?
b/Chứng minh AE=EF=FC .
ta có MD//BN ( AB//CD)
MD=BN(AD=BC,MD=AM,BN=NC)
=> BMDN là hình bình hành
a: Xét tứ giác BMDN có
BN//DM
BN=DM
Do đó: BMDN là hình bình hành
=>BM//DN
Xét ΔADF có
M là trung điểm của AD
ME//DF
Do đó: E là trung điểm của AF
=>AE=EF
Xét ΔCEB có
N là trung điểm của CB
NF//EB
DO đó: F là trung điểm của CE
=>AE=EF=FC
b: AE+EO=AO
CF+FO=CO
mà AO=CO; AE=CF
nên EO=FO
=>O là trung điểm của EF
BMDN là hình bình hành
nên BD cắt MN tại trung điểm của mỗi đường
=>O là trung điểm của MN
Xét tứ giác MENF có
O làtrung điểm chung của MN và FE
nên MENF là hình bình hành
Cho hình bình hành ABCD, gọi O là giao điểm của 2 đường chéo và M,N lần lượt là trung điểm cuả AD,BC. BM và DN cắt AC lần lượt tại E và F.
a, Tứ giác BMDN là hình gì? Vì sao?
b, Chứng minh AE = EF = FC
c, Tính diện tích tam giác DBM, biết diện tích hình bình hành là 30 cm2
Giúp em với ạ
cho hình bình hành abcd có ab = 2.ad. gọi m, n lần lượt là trung điểm của ab và cd. a) chứng minh tứ giác bmdn là hình bình hành. b) tia dm cắt cb tại i. tứ giác dnbi là hình gì ? vì sao ? c) gọi k là giao điểm của db và ni. chứng minh m, k, c thẳng hàng.
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Bài 1. Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của BC và AD. C/m tứ giác BMDN là hình bình hành.
Bài 2. Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Gọi P là giao điểm của DM và AN. Gọi Q là giao điểm của CM và BN. C/m tứ giác PMQN là hình bình hành.
cho hình bình hành abcd .gọi M N theo thứ tự là trung điểm của AB và CD a. chứng minh tứ giác bmdn là hình bình hành b.chứng minh góc amd=góc bnc c gọi i là trung điểm của ac chứng minh m,i,n là thẳng hàng
a) Do M là trung điểm của AB (gt)
⇒ BM = AM = AB : 2
Do N là trung điểm của CD (gt)
⇒ CN = DN = CD : 2
Do ABCD là hình bình hành (gt)
⇒ AB = CD và AB // CD
⇒ BM = AB : 2 = CD : 2 = DN
Do AB // CD (cmt)
⇒ BM // DN
Tứ giác BMDN có:
BM // DN (cmt)
BM = DN (cmt)
⇒ BMDN là hình bình hành
b) Do BMDN là hình bình hành (cmt)
⇒ BN // DM
⇒ ∠AMD = ∠MBN (đồng vị) (1)
Do AB // CD (cmt)
⇒ ∠MBN = ∠BNC (so le trong) (2)
Từ (1) và (2) ⇒ ∠AMD = ∠BNC
c) Do ABCD là hình bình hành
I là trung điểm của AC (gt)
⇒ I là trung điểm của BD
Do BMDN là hình bình hành (cmt)
I là trung điểm của BD (cmt)
⇒ I là trung điểm của MN
⇒ M, I, N thẳng hàng
Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo và M, N lần lượt là trung điểm của AD, BC. BM và DN cắt AC lần lượt tại E và F.
a) tứ giá BMDN là hình gì? vì sao?
b) CM AE=EF=FC
c) tính diện tích tam giác DBM. biết diện tích hình bình hành là 30cm2
a,Hình bình hành ABCD có AB=CD
⇒12AB=AM=12CD=CN⇒12AB=AM=12CD=CN
Mặt khác, M,N lần lượt là trung điểm của AB và CD
Do đó, AM//CN
Tứ giác AMCN có cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành (đpcm)
b, Tứ giác AMCN là hình bình hành
⇒⇒M1ˆ=N1ˆM1^=N1^ (Hai góc đối của hình bình hành AMCN)
⇒⇒M2ˆ=N2ˆM2^=N2^ (Do M1ˆM1^ và M2ˆM2^ là hai góc kề bù; N1ˆN1^ và N2ˆN2^ là hai góc kề bù)
Mặt khác, ABCD là hình bình hành nên AB//CD ⇒⇒B1ˆ=D1ˆB1^=D1^
ΔEDNΔEDN và ΔKBMΔKBM có:
M2ˆ=N2ˆM2^=N2^
DN=BMDN=BM
B1ˆ=D1ˆB1^=D1^
⇒ΔEDN=ΔKBM(g.c.g)⇒ΔEDN=ΔKBM(g.c.g)
⇒ED=KB⇒ED=KB (đpcm)
c, Gọi O là giao điểm của AC và BD.
ABCD là hình bình hành
⇒OA=OC⇒OA=OC
ΔCABΔCAB có:
MA=MBMA=MB
OA=OCOA=OC
MC cắt OB tại K
⇒⇒ K là trọng tâm của ΔCABΔCAB
Mặt khác, I là trung điểm của BC
⇒⇒ IA,OB,MC đồng quy tại K
Hay AK đi qua trung điểm I của BC (đpcm)
Mk vẽ ko đc đẹp lắm , xl nha . Chỗ AC bạn kẻ thêm 1 nét đứt và tên là O nha
@ Mạc Lan Nguyệt y@ EM bị nhầm đề rồi:). Đọc lại đề bài nhé!
a) ABCD là hình bình hành
=> AD//=BC
có M là trung điểm AD, N là trung điểm BC
=> MD//=BN
=> MBND là hình bình hành
b) Xét tam giác ADB có các đường trung tuyến AO, BM cắt nhau tại E
=> E là trọng tâm
=> \(AE=\frac{2}{3}AO=\frac{2}{3}.\frac{1}{2}AC=\frac{1}{3}AC\)
Tương tự xét tam giác BCD có: F là trọng tâm
=> \(CF=\frac{1}{3}AC\)
Mà AE+EF+CF=AC=> \(EF=\frac{1}{3}AC\)
c) Gọi H là chân đường hạ từ D xuống đáy AD
=> \(S_{\Delta ABM}=\frac{1}{2}.BH.AM=\frac{1}{2}.BH.\frac{1}{2}AD=\frac{1}{4}BH.AD=\frac{1}{4}S_{ABCD}=\frac{1}{4}.30=\frac{15}{2}\left(cm^2\right)\)
Cho hình bình hành ABCD có CD=2AD;N,M lần lượt là trung diểm các cạnh AB, CD
a) Tứ giác BMDN là hình gì? vì sao ?
b)Gọi giao điểm của BM,DN vs AC lần lượt là H,K. Chứng minh Ch = 1/3 AC
c) Tìm điều kiện của hình bình hành ABCD để BMDN là hình thoi
Cho hình vuông ABCD. Gọi M,N,P lần lượt là trung điểm của AD, BC,DC. Đường thẳng AP và đường thẳng DN cắt nhau tại K
a) CM: tứ giác BMDN là hình bình hành
b) CM: AP vuông góc với DN
c) CM: tứ giác BMKN là hình thang cân
d) Cho AB=√5. Tính diện tích tam giác MDK