Gọi x 1 , x 2 là hai nghiệm của phương trình 3 x 2 - a x - b = 0 . Tổng x 1 + x 2 bằng:
( A ) − a 3 ( B ) a 3 ( C ) b 3 ( D ) − b 3
Hãy chọn câu trả lời đúng
Cho hai phương trình: x2-5x+6=0 (1)
x+(x-2)(2x+1)=2 (2)
a) Chứng minh hai phương trình có nghiệm chung là x=2
b) Chứng minh: x=3 là nghiệm của (1) nhưng không là nghiệm của (2).
c) Hai phương trình đã cho có tương đương với nhau không, vì sao?
a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)
Cho phương trình x2 - 2x - 1 = 0. Gọi x1,x2 là các nghiệm của phương trình này.Hãy lập một phương trình bậc hai có hai nghiệm là số đối của x1 và x2
Gọi phương trình cần tìm là (1) ax2 + bx - c = 0
ta có: delta = 22 - 4.(-1) = 8 > 0 => phương trình có 2 nghiệm phân biệt x1= \(\frac{2-\sqrt{8}}{2}\)= 1 - \(\sqrt{2}\), x2 = 1 + \(\sqrt{2}\)
Suy ra nghiệm phương trình (1) là x1 = - 1 + \(\sqrt{2}\), x2 = -1 - \(\sqrt{2}\)
ta có x1 = -1 + \(\sqrt{2}\)= \(\frac{-2+\sqrt{8}}{2}\), x2 = \(\frac{-2-\sqrt{8}}{2}\)
=> a = 1, b = 2, delta = 8
ta có: delta = b2 - 4ac = 22 - 4c = 8 => c = - 1
vậy phương trình cần tìm có dạng: x2 + 2x - 1 = 0
xong r nhé:))
Cho phương trình: x2 – 2(2m + 1)x + 2m – 4 = 0.
a) Giải phương trình khi m = 1 và chứng tỏ tích hai nghiệm của phương trình luôn nhỏ hơn 1.
b) Có giá trị nào của m để phương trình có nghiệm kép không?
c) Gọi x1, x2 là hai nghiệm của phương trình, chứng minh rằng biểu thức: M = x1(1 – x2) + x2(1 – x1) là một hằng số.
Em yêu ơi ! Ở đây có ít người lớp 9 lắm , em lên hh sẽ có giáo viên giảng cho
em yêu ơi?????????????????
xưng hô vậy hả thằng kia
ai mà dám hỗn láo vậy
Cho phương trình bậc hai ẩn số x: x2 - 2(m + 1)x + m - 4 = 0. (1)
a) Chứng minh phương trình (1) luôn luôn có hai nghiệm phân biệt với mọi giá trị của m.
b) Gọi x1, x2 là hai nghiệm phân biệt của phương trình (1). Tìm m để 3( x1 + x2) = 5x1x2.
không dễ chút nào
cho phương trình: x2-2(m+2)x+4m+3=0
a) giải phương trình khi m=-3
b) chứng minh rằng với mọi m, phương trình luôn có hai nghiệm phân biệt
gọi x1 x2 là 2 nghiệm của phương trình. tính A=x12+x22-10(x1+x2)
a/ thay m=-3 vào pt ta dc : x2 - 2 * (-1) *x -12 +3 = 0 => x2 +2x - 9 = 0
\(\Delta\)= 1 + 9 = 10 => x1 = -1 + căng 10
x2 = -1 - căng 10
b/ có : \(\Delta\)' = [ - (m+2) ] 2 - (4m + 3) = m2 + 4m + 4 - 4m - 3 = m2 + 1 > 0 vs mọi m => có 2 nghiệm pb
có : A = x12 + x22 - 10( x1 + x2) = (x1+x2)2 - 2x1x2 - 10( x1 + x2 ) = ( 2m + 4 )2 - 2 ( 4m + 3 ) - 10 ( 2m + 4 ) = 4m2 + 16m + 16 - 8m - 6 - 20m -40 = 4m2 -12m -30
rồi bn bấm máy tính ra kết quả nha ^^
a) Thay m=-3 vào phương trình ta được :
x2-2((-3)+2))x+4*(-3)+3=0
x2+2x-9=0
ta có đen ta phẩy =1+9=10
vì đen ta > 0 nên phương trình có 2 nghiệm phân biệt :
x1=-1-(căn 10)
x2=-1+(căn 10)
Vậy pt có nghiệm là {-1-(căn 10) ; -1+(căn 10)}
bn ơi mk chỉ lm đc phần a thôi phần b bn thử tính đen ta > 0 theo m ở pt ban đầu xem
b)
giúp em câu b với
Cho phương trình \(mx^2+\left(2m-2\right)x+m-1=0\) ,(1) ( với m là tham số )
a) Định m để phương trình ( 1 ) có hai nghiệm phân biệt.
b) Gọi 1 2 x x; là hai nghiệm của phương trình ( 1 ). Chứng minh rằng giá trị biểu thức \(Q=\dfrac{1013}{x_1}+\dfrac{1013}{x_2}+1\) luôn là hằng số.
b) Theo hệ thức Vi ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m-2}{m}\\x_1.x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2-2m}{m}\\x_1.x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
Ta có:
\(Q=\dfrac{1013}{x_1}+\dfrac{1013}{x_2}+1=1013\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)+1\)
\(=1013\left(\dfrac{x_1+x_2}{x_1.x_2}\right)+1=1013\left(\dfrac{\dfrac{2-2m}{m}}{\dfrac{m-1}{m}}\right)+1\)
\(=1013.\dfrac{-2\left(m-1\right)}{m-1}+1=-2026+1=-2025\), luôn là hằng số (đpcm)
Cho phương trình (lần x) x²-2(m-2) x+m² =0 (1) (m là tham số) 1: tìm m để phương trình (1) có nghiệm 2: Trong trường hợp phương trình (1) có nghiệm. Gọi x1, x2 là hai nghiệm của phương trình (1) a: dùng định lí Vi-Ét hãy tính x1+x2 và x1.x2 theo m b: tìm m để x1.x2-(x1+x2)-2=0
Cho phương trình bậc hai x2 - 2(m+1)x + 2m - 4 = 0
1.CMR: Với mọi m phương trình trên luôn có hai nghiệm phân biệt
2.Gọi x1,x2 là 2 nghiệm của phương trình trên. Tính A = x12 + x22 theo m
3.Tìm giá trị của m để A đạt giá trị nhỏ nhất
x2 - 2( m + 1 )x + 2m - 4 = 0
1. Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 4 )
= 4( m + 1 )2 - 8m + 16
= 4( m2 + 2m + 1 ) - 8m + 16
= 4m2 + 8m + 4 - 8m + 16
= 4m2 + 20
Dễ nhận thấy Δ ≥ 20 > 0 ∀ m
hay phương trình luôn có nghiệm với mọi m ( đpcm )
2. Dù là nghiệm kép hay nghiệm phân biệt thì hai nghiệm của phương trình đều viết được dưới dạng
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{2m+2+\sqrt{4m^2+20}}{2}\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{2m+2-\sqrt{4m^2+20}}{2}\end{cases}}\)
Khi đó \(x_1^2+x_2^2=\left(\frac{2m+2+\sqrt{4m^2+20}}{2}\right)^2+\left(\frac{2m+2-\sqrt{4m^2+20}}{2}\right)^2\)
\(=\left(\frac{2m+2+2\sqrt{m^2+5}}{2}\right)^2+\left(\frac{2m+2-2\sqrt{m^2+5}}{2}\right)^2\)( em đưa 2 ra ngoài căn chắc chị hiểu )
\(=\left(\frac{2\left(m+1+\sqrt{m^2+5}\right)}{2}\right)^2+\left(\frac{2\left(m+1-\sqrt{m^2+5}\right)}{2}\right)^2\)
\(=\left(m+1+\sqrt{m^2+5}\right)^2+\left(m+1-\sqrt{m^2+5}\right)^2\)
\(=\left[\left(m+1\right)+\sqrt{m^2+5}\right]^2+\left[\left(m+1\right)-\sqrt{m^2+5}\right]^2\)
\(=\left(m+1\right)^2+2\left(m+1\right)\sqrt{m^2+5}+m^2+5+\left(m+1\right)^2-2\left(m+1\right)\sqrt{m^2+5}+m^2+5\)
\(=2\left(m+1\right)^2+2m^2+10\)
\(=2\left(m^2+2m+1\right)+2m^2+10\)
\(=2m^2+4m+2+2m^2+10=4m^2+4m+12\)
3. Em mới lớp 8 nên chưa học Min Max mấy dạng này chị thông cảm :(((((((((
à xin phép em sửa một tí :))
1. ... = 4m2 + 20
Dễ nhận thấy Δ ≥ 20 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt với mọi m ( đpcm )
2. Vì phương trình luôn có hai nghiệm phân biệt nên hai nghiệm đó luôn viết được dưới dạng : ...
em quên nhìn cái " luôn có hai nghiệm phân biệt " sorry chị :(
Q này kì ghê, làm đến đó rồi còn ko ra được Min Max ?
3, Ta có : \(4m^2\ge0\forall m\)
\(4m^2+20\ge20\)
Dấu ''='' xảy ra <=> \(4m^2=0\Leftrightarrow m=0\)
Vậy GTNN A là 20 <=> m = 0
cho phương trình x2 - 2x - 1 = 0 . Gọi x1,x2 là các nghiệm của phương trình này . Hãy lập một phương trình bậc hai có hai nghiệm là số đối của x1 và x2 ........Ai giúp mình với . Mình cảm ơn ah
\(\Delta=8>0\) nên phương trình luôn có 2 nghiệm.
Theo viet: x1 + x2 = 2; x1*x2 = -1
Phương trình cần tìm có 2 nghiệm là -x1 và -x2
S= - x1 - x2 = -(x1 + x2) = -2
P= (-x1)*(-x2) = x1*x2 = -1
Vậy phương trình cần tìm là: X2 - SX + P = X2 + 2X - 1
Cho phương trình x2 + 5x − 4 = 0 . Gọi 1 2 x ; x là hai nghiệm của phương trình. Không
giải phương trinh, hăy tính giá trị biểu thức 2 2
1 2 1 2 Q = x + x + 6x x .