Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hie gaming
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết

\(\overline{abc,5}\) -  \(\overline{5ab,c}\) = 119,7 

\(\overline{abc}\) + 0,5 - 500 - \(\overline{abc}\) x 0,1 = 119,7

\(\overline{abc}\) x ( 1 - 0,1) = 119,7 + 500 -  0,5 

\(\overline{abc}\) x 0,9 = 619,2

\(\overline{abc}\)  = 619,2 : 0,9

\(\overline{abc}\) = 688

 

 

Trần Mạnh Dũng
6 tháng 2 2023 lúc 9:59

abc=688

Nguyễn Minh Quân
6 tháng 2 2023 lúc 15:56

 -  5��,�‾ = 119,7 

���‾ + 0,5 - 500 - ���‾ x 0,1 = 119,7

���‾ x ( 1 - 0,1) = 119,7 + 500 -  0,5 

���‾ x 0,9 = 619,2

���‾  = 619,2 : 0,9

���‾ = 688

Hà Hồ Thị
Xem chi tiết
★A•G★nỡtay⁷
Xem chi tiết
Hiếu Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2022 lúc 17:43

Với các số dương x;y ta có:

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

Áp dụng:

\(\Rightarrow P=\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{a}{ca\left(c+a\right)+abc}\)

\(\Rightarrow P\le\dfrac{abc}{ab\left(a+b+c\right)}+\dfrac{abc}{bc\left(a+b+c\right)}+\dfrac{abc}{ca\left(a+b+c\right)}\)

\(\Rightarrow P\le\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(P_{max}=1\) khi \(a=b=c=1\)

Nguyễn Tấn Dũng
Xem chi tiết
Quý Lương
31 tháng 7 2018 lúc 16:00

a) abc = 346

b) abc = 543

c) ab = 15

d) abcd = 3251

Đỗ Vũ Nhật Anh
Xem chi tiết
Duy Nghĩa Hoàng
15 tháng 11 2021 lúc 21:58

Giống mình làm

 

Nguyễn diệp hương
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Akai Haruma
1 tháng 3 2017 lúc 13:02

Lời giải:
Trước tiên ta đi cm bất đẳng thức sau: với \(a,b>0\) thì \(a^3+b^3\geq ab(a+b)\)

BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) ( luôn đúng)

Do đó:, kết hợp với \(abc=1\Rightarrow \)\(\frac{1}{a^3+b^3+abc}\leq \frac{1}{ab(a+b+c)}=\frac{c}{a+b+c}\)

Tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{a+b+c}{a+b+c}=1=\frac{1}{abc}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

soyeon_Tiểubàng giải
1 tháng 3 2017 lúc 13:09

Có: \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2.\left(a+b\right)\ge0\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

TT: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)

\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng vế với vế ta được:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\le\frac{1}{a+b+c}.\frac{c+a+b}{abc}=\frac{1}{abc}\left(đpcm\right)\)

Kuro Kazuya
1 tháng 3 2017 lúc 13:12

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a^2-ab+b^2\ge ab\\b^2-bc+c^2\ge bc\\c^2-ca+a^2\ge ca\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\\\left(b+c\right)\left(b^2-bc+c^2\right)\ge bc\left(b+c\right)\\\left(c+a\right)\left(c^2-ca+a^2\right)\ge ca\left(c+a\right)\end{matrix}\right.\)

Áp dụng hẳng đẳng thức tổng 2 lập phương

\(\Rightarrow\left\{\begin{matrix}a^3+b^3\ge ab\left(a+b\right)\\b^3+c^3\ge bc\left(b+c\right)\\c^3+a^3\ge ca\left(c+a\right)\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a^3+b^3+abc\ge ab\left(a+b\right)+abc\\b^3+c^3+abc\ge bc\left(b+c\right)+abc\\c^3+a^3+abc\ge ca\left(c+a\right)+abc\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a^3+b^3+abc\ge ab\left(a+b+c\right)\\b^3+c^3+abc\ge bc\left(a+b+c\right)\\c^3+a^3+abc\ge ca\left(a+b+c\right)\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{abc}{ab\left(a+b+c\right)}\\\dfrac{1}{b^3+c^3+abc}\le\dfrac{1}{bc\left(a+b+c\right)}=\dfrac{abc}{bc\left(a+b+c\right)}\\\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ca\left(a+b+c\right)}=\dfrac{abc}{ca\left(a+b+c\right)}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{abc}{ab\left(a+b+c\right)}+\dfrac{abc}{bc\left(a+b+c\right)}+\dfrac{abc}{ca\left(a+b+c\right)}\)

\(\Rightarrow VT\le\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}\)

\(\Rightarrow VT\le\dfrac{a+b+c}{a+b+c}=1\)

\(\Leftrightarrow VT\le\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)

\(\Rightarrow\) ( đpcm )