Cho a,b,c là các số thực dương thỏa mãn abc=1.Chứng minh rằng \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\ge\dfrac{1}{2}\)
Cho a, b, c là các số dương biết abc = 1. Chứng minh rằng: \(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}\ge\dfrac{1}{2}\)
Cho các số dương a,b,c cs abc=1 Chứng minh rằng
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)
cho a,b,c là các số thực dương thỏa mãn : abc=1
chứng minh: \(\dfrac{1}{ab+a}+\dfrac{1}{bc+b}+\dfrac{1}{ca+c}\ge\dfrac{3}{2}\)
ba số thực dương a,b,c thỏa mãn \(a+\dfrac{1}{b}=4;b+\dfrac{1}{c}=1;c+\dfrac{1}{a}=\dfrac{7}{3}\). Tính abc
Cho a, b, c là các số dương có abc = 8. CMR \(\dfrac{1}{\sqrt{a^3+1}}+\dfrac{1}{\sqrt{b^3+1}}+\dfrac{1}{\sqrt{c^3+1}}\ge1\)
Cho 3 số thực dương a,b.c thỏa mãn abc=1 cmr:\(\dfrac{b+c}{\sqrt{a}}+\dfrac{c+a}{\sqrt{b}}+\dfrac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Cho 3 số thực a,b, c dương thoả mãn \(\dfrac{1}{a+1}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\) = 2 Tính GTLN của biểu thức P= abc
cho a,b,c là 3 số thực số thực dương và thỏa mãn: abc=1
Tìm GTLN của D = \(\dfrac{a}{b^4+c^4+a}\)+\(\dfrac{b}{a^4+c^4+b}\)+\(\dfrac{c}{a^4+b^4+c}\)