Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Trương
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 20:54

1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\) 

vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)

2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)

vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0

3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)

\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)

4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)

 

Hiếu Chuối
Xem chi tiết
Trần Trọng Thái
Xem chi tiết
Minh Hồng
3 tháng 2 2021 lúc 21:57

a) \(\lim\limits_{x\rightarrow-2}\dfrac{2x^2+x-6}{x^3+8}=\lim\limits_{x\rightarrow-2}\dfrac{\left(2x-3\right)\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\\ =\lim\limits_{x\rightarrow-2}\dfrac{2x-3}{x^2-2x+4}=-\dfrac{7}{12}\).

b) \(\lim\limits_{x\rightarrow3}\dfrac{x^4-x^2-72}{x^2-2x-3}=\lim\limits_{x\rightarrow3}\dfrac{\left(x^2+8\right)\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\\ =\lim\limits_{x\rightarrow3}\dfrac{\left(x^2+8\right)\left(x+3\right)}{x+1}=\dfrac{51}{2}\).

c) \(\lim\limits_{x\rightarrow-1}\dfrac{x^5+1}{x^3+1}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\lim\limits_{x\rightarrow-1}\dfrac{x^4-x^3+x^2-x+1}{x^2-x+1}=\dfrac{5}{3}\).

d) \(\lim\limits_{x\rightarrow1}\left(\dfrac{2}{x^2-1}-\dfrac{1}{x-1}\right)=\lim\limits_{x\rightarrow1}\left(\dfrac{2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\right)\\ =\lim\limits_{x\rightarrow1}\dfrac{1-x}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{-1}{x+1}=-\dfrac{1}{2}\).

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 9 2023 lúc 12:10

a: \(\lim\limits_{x\rightarrow-2}x^2-7x+4=\left(-2\right)^2-7\cdot\left(-2\right)+4=22\)

b: \(\lim\limits_{x\rightarrow3}\dfrac{x-3}{x^2-9}=\lim\limits_{x\rightarrow3}\dfrac{1}{x+3}=\dfrac{1}{3+3}=\dfrac{1}{6}\)

c: \(\lim\limits_{x\rightarrow1}\dfrac{3-\sqrt{x+8}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{9-x-8}{3+\sqrt{x+8}}\cdot\dfrac{1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{-1}{3+\sqrt{x+8}}\)

\(=-\dfrac{1}{6}\)

Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2023 lúc 20:12

a: \(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt[3]{x}-x}{x^2-x}\)

\(=\dfrac{\sqrt[3]{-1}-\left(-1\right)}{\left(-1\right)^2-\left(-1\right)}\)

\(=\dfrac{-1+1}{1+1}=\dfrac{0}{2}=0\)

b: \(\lim\limits_{x\rightarrow1}\dfrac{x^3-x^2-x+1}{x^3-3x+2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x^3-x^2\right)-\left(x-1\right)}{x^3-x-2x+2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{x^2\left(x-1\right)-\left(x-1\right)}{x\left(x^2-1\right)-2\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2-1\right)}{x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)}{\left(x-1\right)\left(x^2+x-2\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+x-2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2x-x-2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-1\right)}=\lim\limits_{x\rightarrow1}\dfrac{x+1}{x+2}=\dfrac{1+1}{1+2}=\dfrac{2}{3}\)

Way Back Home
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 1 2021 lúc 19:10

\(a=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x^2}}+1}{\dfrac{5}{x}-2}=\dfrac{1+1}{-2}=-1\)

Câu b bạn coi lại đề, số cuối là \(-3\) hay \(-7\) nhỉ? 

Kí hiệu lim làm theo thứ tự này:

undefined

undefined

undefined

Nguyễn Việt Lâm
27 tháng 1 2021 lúc 19:15

Câu b số cuối là -3 thì nó hơi kì quặc (vì không phải dạng vô định, cứ thay số thôi):

\(=\lim\limits_{x\rightarrow4}\dfrac{\sqrt{15.4+4}-\sqrt{4-3}-3}{-4+4}=\dfrac{4}{0}=+\infty\)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 11:19

a: \(\lim\limits_{x\rightarrow-1^+}x+1=0\)

=>\(\lim\limits_{x\rightarrow-1^+}\dfrac{1}{x+1}=+\infty\)

b: \(\lim\limits_{x\rightarrow-\infty}1-x^2=\lim\limits_{x\rightarrow-\infty}\left[x^2\left(\dfrac{1}{x^2}-1\right)\right]\)

\(=-\infty\)

c: \(\lim\limits_{x\rightarrow3^-}\dfrac{x}{3-x}=\lim\limits_{x\rightarrow3^-}=\dfrac{-x}{x-3}\)

\(\lim\limits_{x\rightarrow3^-}x-3=0\)

\(\lim\limits_{x\rightarrow3^-}-x=3>0\)

=>\(\lim\limits_{x\rightarrow3^-}\dfrac{x}{3-x}=+\infty\)

Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2023 lúc 20:45

\(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt[3]{2x+12}+x}{x^2+2x}\)

\(=\lim\limits_{x\rightarrow-2}\left(\dfrac{2x+12+x^3}{\sqrt[3]{\left(2x+12\right)^2}-x\cdot\sqrt[3]{2x+12}+x^2}\cdot\dfrac{1}{x^2+2x}\right)\)

\(=\lim\limits_{x\rightarrow-2}\left(\dfrac{x^3+2x^2-2x^2-4x+6x+12}{\left(\sqrt[3]{\left(2x+12\right)^2}+x\cdot\sqrt[3]{2x+12}+x^2\right)\cdot x\cdot\left(x+2\right)}\right)\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x+2\right)\left(x^2-2x+6\right)}{\left(\sqrt[3]{\left(2x+12\right)^2}-x\cdot\sqrt[3]{2x+12}+x^2\right)\cdot x\cdot\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{x^2-2x+6}{x\cdot\left(\sqrt[3]{\left(2x+12\right)^2}-x\cdot\sqrt[3]{2x+12}+x^2\right)}\)

\(=\dfrac{\left(-2\right)^2-2\cdot\left(-2\right)+6}{\sqrt[3]{\left(-2\cdot2+12\right)^2}-\left(-2\right)\cdot\sqrt[3]{2\cdot\left(-2\right)+12}+\left(-2\right)^2}\)

\(=\dfrac{4+4+6}{\sqrt[3]{64}+2\cdot\sqrt[3]{8}+4}\)

\(=\dfrac{14}{8+2\cdot2+4}=\dfrac{14}{12+4}=\dfrac{14}{16}=\dfrac{7}{8}\)

b: \(\lim\limits_{x\rightarrow2}\dfrac{x-\sqrt{x+2}}{x^3-8}\)

\(=\lim\limits_{x\rightarrow2}\left(\dfrac{x^2-x-2}{x+\sqrt{x+2}}\cdot\dfrac{1}{x^3-8}\right)\)

\(=\lim\limits_{x\rightarrow2}\left(\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x+\sqrt{x+2}\right)\cdot\left(x-2\right)\left(x^2+2x+4\right)}\right)\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x+1}{\left(x+\sqrt{x+2}\right)\left(x^2+2x+4\right)}\)

\(=\dfrac{2+1}{\left(2+\sqrt{2+2}\right)\left(2^2+2\cdot2+4\right)}\)

\(=\dfrac{3}{\left(2+2\right)\left(4+4+4\right)}=\dfrac{3}{12\cdot4}=\dfrac{1}{4\cdot4}=\dfrac{1}{16}\)

trần trang
Xem chi tiết
Hoàng Tử Hà
24 tháng 1 2021 lúc 12:44

a/ L'Hospital:

 \(=\lim\limits_{x\rightarrow2}\dfrac{x-\left(x+2\right)^{\dfrac{1}{2}}}{\left(4x+1\right)^{\dfrac{1}{2}}-3}=\lim\limits_{x\rightarrow2}\dfrac{1-\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}{\dfrac{1}{2}\left(4x+1\right)^{-\dfrac{1}{2}}.4}=\dfrac{1-\dfrac{1}{2}.4^{-\dfrac{1}{2}}}{2.9^{-\dfrac{1}{2}}}=\dfrac{9}{8}\)

b/ L'Hospital:\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7\right)^{\dfrac{1}{2}}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{2}\left(2x+7\right)^{-\dfrac{1}{2}}.2+1}{3x^2-8x}=\dfrac{9^{-\dfrac{1}{2}}+1}{3-8}=-\dfrac{4}{15}\)