Cho đường thẳng d: x - 2y - 3 = 0. Tọa độ hình chiếu vuông góc H của điểm M(0;1) trên đường d là:
A. H(-1;2)
B. H(5;1)
C. H(3;0)
D. H(1;-1)
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d : x - 2 y - 3 = 0 . Tọa độ hình chiếu vuông góc H của điểm M (0;1) trên đường thẳng là
A. H (-1;2)
B. H (5;1)
C. H (3;0)
D. H (1; -1)
Trong mặt phẳng tọa độ Oxy cho đường thẳng d 4x+2y+1=0 và điểm A(1;1)
Xác định tọa độ hình chiếu vuông góc của Alên d.
Gọi \(AH\) là hình chiếu của \(A\) trên \(d\)
\(\Rightarrow AH:-2x+4y+c'=0\)
AH đi qua \(A\left(1;1\right)\Rightarrow-2.1+4.1+c'=0\)
\(\Rightarrow c'=-2\)
\(\Rightarrow\) phương trình \(AH\) là : \(-2x+4y-2=0\Rightarrow-x+2y-1=0\)
Tọa độ H là nghiệm của hệ phương trình :
\(\left\{{}\begin{matrix}-x+2y-1=0\\4x+2y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{3}{10}\end{matrix}\right.\)
\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)
Gọi \(\left(d'\right)\) là đường thẳng qua A và vuông góc với (d). Do (d) có VTPT \(\overrightarrow{n_d}=\left(4;2\right)\)
\(\Rightarrow\) \(\left(d'\right)\) có VTPT \(\overrightarrow{n_{d'}}=\left(2;-4\right)\) hay \(\left(d'\right):2x-4y+m=0\) \(\left(m\inℝ\right)\)
Mà \(A\left(1;1\right)\in\left(d'\right)\) nên \(2-4+m=0\Leftrightarrow m=2\). Vậy đường thẳng qua A và vuông góc với \(d\) có pt là \(2x-4y+2=0\) hay \(x-2y+1=0\)
Do đó hình chiếu vuông góc H của A lên d chính là giao điểm của d' và d. Nếu \(H\) có tọa độ \(\left(x_H;y_H\right)\) thì \(x_H;y_H\) thỏa mãn hệ phương trình \(\left\{{}\begin{matrix}x_H-2y_H+1=0\\4x_H+2y_H+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_H=-\dfrac{2}{5}\\y_H=\dfrac{3}{10}\end{matrix}\right.\)\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\).
Vậy hình chiếu của A lên d có tọa độ \(\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)
cho điểm m (-1 1) và đường thẳng denta 3x+y-8=0
a)Viết phương trình đường thẳng d đi qua m vuông góc với đường thẳng denta
b)Tìm tọa độ hình chiếu vuông góc với h của điểm M lên đường thẳng delta
c)tọa độ điểm M' đối xứng với điểm M Qua denta
a.
Do d vuông góc với \(\Delta\) nên d nhận \(\left(1;-3\right)\) là 1 vtpt
Phương trình d:
\(1\left(x+1\right)-3\left(y-1\right)=0\Leftrightarrow x-3y+4=0\)
b.
\(M\in d\) mà \(MH\perp\Delta\Rightarrow\) H là giao điểm của d và \(\Delta\)
Tọa độ H là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-3y+4=0\\3x+y-8=0\end{matrix}\right.\) \(\Rightarrow H\left(2;2\right)\)
c.
M' đối xứng với M qua \(\Delta\) khi và chỉ khi H là trung điểm MM'
Theo công thức trung điểm:
\(\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=5\\y_{M'}=2y_H-y_M=3\end{matrix}\right.\) \(\Rightarrow M'\left(5;3\right)\)
Tại sao lại đổi từ (3; 1) sang (1; -3 ) vậy ạ? Denlta có dạng pttq thì có vtpt và đường thẳng d cũng vuông góc với denlta rồi mà?
Trong mặt phẳng tọa độ oxy cho hình thang ABCD vuông tại A và D có CD = 2AB và B ( 2;3 ), gọi E là trung điểm của cạnh CD, H là hình chiếu vuông góc của E lên AC, biết phương trình đường thẳng DH: x + 2y -3 = 0 và đường thẳng AC di qua k ( 1;3 )
trong mp vs hệ tọa độ oxy cho hình thang vuông ABCD có góc BAD=ADC=90 độ,đỉnh D(2;2) và CD=2AB.gọi H là hình chiếu vuông góc của D trên đường chéo AC .điểm M(22/5;14/5) là trung điểm của HC.xác định tọa độ các đỉnh A,B,C biết điểm B thuộc đường thẳng x-2y+4=0
Phương trình BM: \(\widehat{DM}=\left(\frac{22}{5}-2;\frac{14}{5}-2\right)=\left(\frac{12}{5};\frac{4}{5}\right)\)//(3;1)(BM):\(3\left(x+\frac{22}{5}\right)+1\left(y-\frac{14}{5}\right)=0\)⇔(BM):3x+y−16=0Tọa độ B là nghiệm hệ\(\begin{cases}3-2y+4=0\\3x+y-16=0\end{cases}\)<=> \(\begin{cases}x=4\\y=4\end{cases}\)=>B(4;4)Gọi K là giao điểm của BD và AC. Ta có \(\overrightarrow{KB}=-\frac{1}{2}\overrightarrow{KD}\)Tọa độ K\(\begin{cases}x_K=\frac{4+\frac{1}{2}.2}{1+\frac{1}{2}}=\frac{10}{3}\\y_K=\frac{4+\frac{1}{2}.2}{1+\frac{1}{2}}=\frac{10}{3}\end{cases}\)=> K(\(\frac{10}{3};\frac{10}{3}\))Phương trình AC:
Trong mặt phẳng 0xy , cho đường thẳng d : x-2y+1=0 và điểm M(2;-2) . Toạ độ hình chiếu vuông góc của điểm M lên đường thẳng d là
Phương trình d' qua M và vuông góc d có dạng:
\(2\left(x-2\right)+1\left(y+2\right)=0\Leftrightarrow2x+y-2=0\)
Hình chiếu vuông góc của M lên d là giao điểm d và d' nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\) \(\Rightarrow\left(\dfrac{3}{5};\dfrac{4}{5}\right)\)
Bài 1: Trong htđ Oxy cho đường thẳng d : 3x-y+4 = 0 và đường thẳng denta : x+2y-5=0 .
Điểm A ( -2; 3).
1) Hãy tìm tọa độ điểm H là hình chiếu của A trên d.
2) tìm tọa độ A’ là điểm đối xứng với A qua d.
3) Viết phương trình đường thẳng đối xứng với đường thẳng d qua đường thẳng denta
4) Viết phuong trình đường thẳng đôi xứng với d qua A ( 3 dạng PT).
5) Tìm tọa độ điểm N trên d sao cho ON nhỏ nhất.
P/S : GIÚP MK VS Ạ. MK CẦN LẮM Ạ. GIẢI CHI TIẾT GIÚP MK VS Ạ. THANKS NHÌU NHÌU Ạ
1. Gọi d' là đường thẳng qua A và vuông góc d
\(\Rightarrow\) d' nhận (1;3) là 1 vtpt
Phương trình d':
\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)
H là giao điểm d và d' nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)
\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)
2.
Do A' đối xứng A qua d nên H là trung điểm AA'
\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)
\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)
3.
Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)
Lấy điểm \(C\left(0;4\right)\) thuộc d
Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:
\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)
Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)
Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'
\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)
Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':
\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)
4.
Gọi \(d_1\) là đường thẳng đối xứng với d qua A
\(\Rightarrow d_1||d\Rightarrow d_1\) có dạng: \(3x-y+c=0\)
Do A cách đều d và \(d_1\) nên:
\(d\left(A;d\right)=d\left(A;d_1\right)\)
\(\Leftrightarrow\dfrac{\left|3.\left(-2\right)-3+4\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{\left|3.\left(-2\right)-3+c\right|}{\sqrt{3^2+\left(-1\right)^2}}\)
\(\Leftrightarrow\left|c-9\right|=5\Rightarrow\left[{}\begin{matrix}c=4\left(loại\right)\\c=14\end{matrix}\right.\)
Vậy pt \(d_1\) có dạng: \(3x-y+14=0\)
Em tự chuyển sang 2 dạng còn lại
Trong không gian với hệ tọa độ Oxyz cho hai điểm M(1;2;3), N(3;4;5) và mặt phẳng P : x + 2 y + 3 z - 14 = 0 . Gọi ∆ là đường thẳng thay đổi nằm trong mặt phẳng (P). Gọi H, K lần lượt là hình chiếu vuông góc của M, N trên ∆ . Biết rằng khi M H = N K thì trung điểm của HK luôn thuộc một đường thẳng d cố định, phương trình của đường thẳng d là
A. x = 1 y = 13 - 2 t z = - 4 + t
B. x = t y = 13 - 2 t z = - 4 + t
C. x = t y = 13 + 2 t z = - 4 + t
D. x = t y = 13 - 2 t z = - 4 - t
Do đó J thuộc mặt phẳng trung trực của MN là x + y + z - 9 = 0
Lại có
Từ đó suy ra J thuộc giao tuyến của hai mặt phẳng có phương trình
Chọn B.
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;3) và mặt phẳng α : x - 2 y + z - 12 = 0 . Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng α
A. H(5;-6;7)
B. H(2;0;4)
C. H(3;-2;5)
D. H(-1;6;1)