Cho a,b,c là 3 số nguyên thỏa mãn
bc-ab+ac-aa=-1
Chứng minh b,claf hai số đối nhau
Cho a,b,c là 3 số nguyên thỏa mãn : ab-ac+bc-c(c mũ hai ) = -1 chứng minh rằng a, b là hai số đối nhau
hãy giúp mình với thứ 2 mình kiểm tra 1 tiết rùi
cho a;b;c là 3 số nguyên thỏa mãn:ab-ac+bc-c2=-1 chứng minh rằng a;b là 2 số đối nhau Ai đúng tick nè
⇔\(a\left(b-c\right)+c\left(b-c\right)=-1\)
⇔\(\left(a+c\right)\left(b-c\right)=-1\)
TH1:\(\left\{{}\begin{matrix}a+c=1\\b-c=-1\end{matrix}\right.\)⇒\(a+b=0\) ⇒ a và b là 2 số đối nhau
TH2:\(\left\{{}\begin{matrix}a+c=-1\\b-c=1\end{matrix}\right.\)⇒ a+b=0 ( kết quả vẫn đúng như trên)
ta có
ab-ac+bc-c.c=-1
a(b-c)+c(b-c)=-1
(b-c).(a+c)=-1
để kết quả =-1 thì 1 trong hai ngoặc phải có kết quả là một số âm, mà c chung, suy ra a và b phải đối nhau
cho a,b,c là các số thực dương thỏa mãn : abc=1
chứng minh: \(\dfrac{1}{ab+a}+\dfrac{1}{bc+b}+\dfrac{1}{ca+c}\ge\dfrac{3}{2}\)
Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)
\(\Rightarrow VT=\dfrac{1}{\dfrac{y}{x}\left(\dfrac{z}{y}+1\right)}+\dfrac{1}{\dfrac{z}{y}\left(\dfrac{x}{z}+1\right)}+\dfrac{1}{\dfrac{x}{z}\left(\dfrac{y}{x}+1\right)}\)
\(VT=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)
\(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\dfrac{3}{2}\)
Cho a,b,c là số thực dương thỏa mãn:a+b+c=1
Chứng minh rằng:\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\ge2\)
\(VT=\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ca}{c+a}+\dfrac{c\left(a+b+c\right)+ab}{a+b}\)
\(VT=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\)
Ta có:
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}\ge2\left(a+b\right)\)
Tương tự: \(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(a+c\right)\)
\(\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(b+c\right)\)
Cộng vế với vế:
\(\Rightarrow VT\ge2\left(a+b+c\right)=2\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
cho a b c là các số thực dương thỏa mãn a+b+c=1chứng minh (a+bc)/(b+c)+(b+ca)/(c+a)+(c+ab)/(a+b)>2
Cho a, b, c là các số nguyên. Biết ab-ac+bc-c2=-1. Chứng minh rằng hai số a và b đối nhau.
cho a,b,c là các số thực thỏa mãn a+b+c=1
chứng minh a^2+b^2+c^2>=1/3
áp dụng BĐT Bunhiacopxky
\(=>\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(=>3\left(a^2+b^2+c^2\right)\ge1^2\)
\(=>a^2+b^2+c^2\ge\dfrac{1}{3}\left(đpcm\right)\)
dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)
cho a,b là các số thực dương thỏa mãn ab>=1
chứng minh: 1/(1+a^2)+1/(1+b^2)>=2(1+ab)
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=\dfrac{2}{ab+1}\)
Dấu "=" xảy ra khi \(a=b\) hoặc \(ab=1\)
\(< =>VT< =>\dfrac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}=\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\)
\(VT\ge VP\)(giả thiết)
\(< =>\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\ge\dfrac{2}{1+ab}\)
\(< =>a^2+b^2+2+a^3b+ab^3+2ab-2a^2-2b^2-2a^2b^2-2\ge0\)
\(< =>\left(a-b^{ }\right)^2\left(ab-1\right)\ge0\)(luôn đúng với mọi a,b là các số thực dương thỏa mãn \(ab\ge1\))
\(\)
cho a,b và c là các số thực không âm thỏa mãn a+b+c=1
Chứng minh \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)