Thực hiện phép cộng các phân thức sau:
a) 2 − a 2 a − 3 + a − 2 a 2 3 − a + 7 − 5 a a − 3 với a ≠ 3 ;
b) 3 − 3 b 2 b + 3 b − 1 2 b − 1 + 11 b − 5 2 b − 4 b 2 với b ≠ 0 và b ≠ 1 2
Thực hiện các phép cộng, trừ phân thức sau:
a) \(\dfrac{a}{{a - 3}} - \dfrac{3}{{a + 3}}\) b) \(\dfrac{1}{{2x}} + \dfrac{2}{{{x^2}}}\) c) \(\dfrac{4}{{{x^2} - 1}} - \dfrac{2}{{{x^2} + x}}\)
`a, a/(a-3) - 3/(a+3) = (a(a+3) - 3(a-3))/(a^2-9)`
`= (a^2+9)/(a^2-9)`
`b, 1/(2x) + 2/x^2 = x/(2x^2) + 4/(2x^2) = (x+4)/(2x^2)`
`c, 4/(x^2-1) - 2/(x^2+x) = (4x)/(x(x-1)(x+1)) - (2(x-1))/(x(x+1)(x-1))`
`= (2x+2)/(x(x-1)(x+1)`
`= 2/(x(x-1))`
Thực hiện các phép cộng, trừ phân thức sau:
a) \(\dfrac{{a - 1}}{{a + 1}} + \dfrac{{3 - a}}{{a + 1}}\) b) \(\dfrac{b}{{a - b}} + \dfrac{a}{{b - a}}\) c) \(\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}} - \dfrac{{{{\left( {a - b} \right)}^2}}}{{ab}}\)
a) \(\dfrac{a-1}{a+1}+\dfrac{3-a}{a+1}\)
\(=\dfrac{a-1+3-a}{a+1}\)
\(=\dfrac{2}{a+1}\)
b) \(\dfrac{b}{a-b}+\dfrac{a}{b-a}\)
\(=\dfrac{b}{a-b}+\dfrac{-a}{a-b}\)
\(=\dfrac{b-a}{a-b}\)
\(=-1\)
c) \(\dfrac{\left(a+b\right)^2}{ab}-\dfrac{\left(a-b\right)^2}{ab}\)
\(=\dfrac{\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)+\left(a-b\right)\right]}{ab}\)
\(=\dfrac{4ab}{ab}\)
\(=4\)
`a, (a-1)/(a+1) + (3-a)/(a+1)`
`= (a-1+3-a)/(a+1)`
`=2/(a+1)`
`b, b/(a-b) + a/(b-a)`
`= b/(a-b) - a/(a-b)`
`= (b-a)/(a-b)`
`c, (a+b)^2/(ab) -(a-b)^2/(ab)`
`=(a^2+2ab+b^2-a^2+2ab-b^2)/(ab)`
`= (4ab)/(ab)`
Thực hiện các phép tính cộng, trừ phân thức sau:
a) \(\dfrac{x}{{x + 3}} + \dfrac{{2 - x}}{{x + 3}}\) b) \(\dfrac{{{x^2}y}}{{x - y}} - \dfrac{{x{y^2}}}{{x - y}}\) c) \(\dfrac{{2x}}{{2x - y}} + \dfrac{y}{{y - 2x}}\)
\(a,\dfrac{x}{x+3}+\dfrac{2-x}{x+3}\\ =\dfrac{x+2-x}{x+3}\\ =\dfrac{2}{x+3}\\b,\dfrac{x^2y}{x-y}-\dfrac{xy^2}{x-y}\\ =\dfrac{x^2y-xy^2}{x-y}\\ =\dfrac{xy\left(x-y\right)}{x-y}\\ =xy\\ c,\dfrac{2x}{2x-y}+\dfrac{y}{y-2x}\\=\dfrac{2x}{2x-y}-\dfrac{y}{2x-y}\\ =\dfrac{2x-y}{2x-y}\\ =1 \)
`a, x/(x+3) + (2-x)/(x+3) = (x+2-x)/(x+3) = 2/(x+3)`
`b, (x^2y)/(x-y) - (xy^2)/(x-y) = (x^2y-xy^2)/(x-y) = (xy(x-y))/(x-y)= xy`
`c, (2x)/(2x-y) - (y)/(2x-y)`
`= (2x-y)/(2x-y) = 1`
Thực hiện các phép cộng, trừ phân thức sau:
a) \(\dfrac{1}{{2a}} + \dfrac{2}{{3b}}\)
b) \(\dfrac{{x - 1}}{{x + 1}} - \dfrac{{x + 1}}{{x - 1}}\)
c) \(\dfrac{{x + y}}{{xy}} - \dfrac{{y + z}}{{yz}}\)
d) \(\dfrac{2}{{x - 3}} - \dfrac{{12}}{{{x^2} - 9}}\)
e) \(\dfrac{1}{{x - 2}} + \dfrac{2}{{{x^2} - 4x + 4}}\)
a: \(=\dfrac{3b+4a}{6ab}\)
b: \(=\dfrac{x^2-2x+1-x^2-2x-1}{x^2-1}=\dfrac{-4x}{x^2-1}\)
c: \(=\dfrac{xz+yz-xy-xz}{xyz}=\dfrac{yz-xy}{xyz}=\dfrac{z-x}{xz}\)
d: \(=\dfrac{2x+6-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x+3}\)
e: \(=\dfrac{x-2+2}{\left(x-2\right)^2}=\dfrac{x}{\left(x-2\right)^2}\)
Câu 1. (1,0 đ) Phân tích các đa thức sau thành nhân tử:
a. b.
Câu 2. (2,5 đ) Thực hiện các phép tính sau:
a)
a) ;
b)
Câu 3. (2,5 đ) Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB; F thuộc AC).
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Vẽ điểm D đối xứng với A qua F. Chứng minh tứ giác DHEF là hình bình hành.
c) Tam giác ABC cần thêm điều kiện gì thì tứ giác AEHF là hình vuông?
Câu 3:
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Thực hiện phép cộng các phân thức sau:
a) u + 10 u − 2 + u − 18 u − 2 + u + 2 u 2 − 4 với u ≠ ± 1 2 ;
b) 2 − x 2 x 2 y 2 + 5 + 2 y 8 x 3 y 2 + x − 7 4 x 3 y với x ≠ 0 và y ≠ 0 .
Thực hiện các phép nhân phân thức sau:
a) \(\dfrac{{4y}}{{3{x^2}}} \cdot \dfrac{{5{x^3}}}{{2{y^3}}}\)
b) \(\dfrac{{{x^2} - 2x + 1}}{{{x^2} - 1}} \cdot \dfrac{{{x^2} + x}}{{x - 1}}\)
c) \(\dfrac{{2x + {x^2}}}{{{x^2} - x + 1}} \cdot \dfrac{{3{x^3} + 3}}{{3x + 6}}\)
\(a,=\dfrac{4y.5x^3}{3x^2.2y^3}=\dfrac{20x^3y}{6x^2y^3}=\dfrac{10x}{3y^2}\\ b,=\dfrac{\left(x-1\right)^2.x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x-1\right)}=\dfrac{\left(x-1\right)^2.x.\left(x+1\right)}{\left(x-1\right)^2.\left(x+1\right)}=x\)
\(c,=\dfrac{x\left(2+x\right).3\left(x^3+1\right)}{\left(x^2-x+1\right).3.\left(x+2\right)}=\dfrac{3x.\left(x+2\right).\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right).3\left(x+2\right)}=x\left(x+1\right)\)
Viết tiếp vào chỗ chấm cho thích hợp:
a) Nếu trong biểu thức chỉ có các phép tính cộng, trừ hoặc chỉ có các phép tính nhân, chia thì ta thực hiện các phép tính theo thứ tự ................
b) Nếu trong biểu thức có các phép tính cộng, trừ, nhân, chia thì ta thực hiện các phép tính ..... trước rồi thực hiện các phép tính ..... sau.
a) Nếu trong biểu thức chỉ có các phép tính cộng, trừ hoặc chỉ có các phép tính nhân, chia thì ta thực hiện các phép tính theo thứ tự từ trái qua phải
b) Nếu trong biểu thức có các phép tính cộng, trừ, nhân, chia thì ta thực hiện các phép tính nhân chia trước rồi thực hiện các phép tính cộng trừ sau.
Đề bài: Viết tiếp vào chỗ chấm cho thích hợp:
a, Nếu trong biểu thức chỉ có các phép tính cộng, trừ hoặc chỉ có các phép tính nhân, chia thì ta thực hiện các phép tính theo thứ tự .....................
b, Nếu trong biểu thức có các phép tính cộng, trừ, nhân, chia thì ta thực hiện các phép tính ....... trước rồi thức hiện các phép tính .......... sau.
Trả lời:
Các từ được viết theo thứ tự là: từ trái sang phải; nhân, chia; cộng, trừ.
Vậy: Các công thức được viết hoàn chỉnh là:
a, Nếu trong biểu thức chỉ có các phép tính cộng, trừ hoặc chỉ có các phép tính nhân, chia thì ta thực hiện các phép tính theo thứ tự từ trái sang phải.
b, Nếu trong biểu thức có các phép tính cộng, trừ, nhân, chia thì ta thức hiện các phép tính nhân, chia trước rồi thức hiện các pehps tính cộng, trừ sau.
Chúc bn học tốt.
Thực hiện các phép chia phân thức sau:
a) \(\dfrac{{5x}}{{4{y^3}}}:\left( { - \dfrac{{{x^4}}}{{20y}}} \right)\)
b) \(\dfrac{{{x^2} - 16}}{{x + 4}} :\dfrac{{2x - 8}}{x}\)
c) \(\dfrac{{2x + 6}}{{{x^3} - 8}}:\dfrac{{{{\left( {x + 3} \right)}^3}}}{{2x - 4}}\)
\(a,=\dfrac{5x}{4y^3}\times\left(\dfrac{-20y}{x^4}\right)=\dfrac{-100xy}{4x^4y^3}=\dfrac{-25}{x^3y^2}\\ b,=\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x+4\right)}\times\dfrac{x}{2\left(x-4\right)}=\dfrac{x}{2}\)
\(c,=\dfrac{2\left(x+3\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\times\dfrac{2\left(x-2\right)}{\left(x+3\right)^3}=\dfrac{4}{\left(x+3\right)^2.\left(x^2+2x+4\right)}\)
a) \(\dfrac{5x}{4y^3}:\left(-\dfrac{x^4}{20y}\right)=\dfrac{5x}{4y^3}\cdot\left(-\dfrac{20y}{x^4}\right)=\dfrac{5\cdot-5}{y^2\cdot x^3}=\dfrac{-25}{x^3y^2}\)
b) \(\dfrac{x^2-16}{x+4}:\dfrac{2x-8}{x}=\left(x-4\right)\cdot\dfrac{x}{2\left(x-4\right)}=\dfrac{x}{2}\)
c) \(\dfrac{2x+6}{x^3-8}:\dfrac{\left(x+3\right)^3}{2x-4}=\dfrac{2\left(x+3\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\cdot\dfrac{2\left(x-2\right)}{\left(x+3\right)^3}=\dfrac{4}{\left(x^2+2x+4\right)\left(x+3\right)^2}\)