Số tự nhiên n sao cho n^2 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Tìm các số tự nhiên n sao cho n! +14 là số chính phương
Tìm cá số tự nhiên n sao cho n! + 19 là số chính phương
Tìm số tự nhiên n sao cho n^2-n+2 là số chính phương.
Đặt \(a^2=n^2-n+2\left(a\in Z\right)\)
\(\Rightarrow4a^2=4n^2-4n+8\)
\(\Leftrightarrow4a^2=\left(2n-1\right)^2+9\)
\(\Leftrightarrow4a^2-\left(2n-1\right)^2=9\)
\(\Leftrightarrow\left(2a-2n+1\right)\left(2a+2n-1\right)=9\)
Phương trình ước số cơ bản.
cmr 2018^4n+2019^4n+2020^4n ko phải là số chính phương với mọi số nguyên n
tìm số nguyên n sao cho 1955+n và 2014+n là số chính phương
tìm số tự nhiên n sao cho 2^n +9 là số chính phương
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
Cho số tự nhiên \(n\) sao cho \(A=n^2+n+6\) là số chính phương.
A là số chính phương nên: \(A=n^2+n+6=k^2\)
\(\Rightarrow4n^2+4n+24=4k^2\)
\(\Rightarrow4n^2+4n+1+23=4k^2\)
\(\Rightarrow\left(2n+1\right)^2+23=4k^2\)
\(\Rightarrow4k^2-\left(2n+1\right)^2=23\)
\(\Rightarrow\left(2k-2n-1\right)\left(2k+2n+1\right)=23\)
Do \(k,n\in N\) nên: \(2k+2n+1>2k-2n-1\)
Ta có hệ:
\(\left\{{}\begin{matrix}2k+2n+1=23\\2k+2n+1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2k+2n+1=23\\4k=24\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}12+2n+1=23\\k=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2n+13=23\\k=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2n=10\\k=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n=5\\k=6\end{matrix}\right.\)
Vậy: n=5
tmf số tự nhiên n sao cho \(n^2\)+ 2021 là số chính phương
Đặt \(n^2+2021=k^2\left(k\in N\right)\)
\(\Rightarrow k^2-n^2=2021\\ \Rightarrow\left(k-n\right)\left(k+n\right)=2021\)
Mà \(k,n\in N\)
\(\Rightarrow\left(k-n\right)\left(k+n\right)=2021\cdot1=43\cdot47\)
\(\left\{{}\begin{matrix}k-n=2021\\k+n=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=1011\\n=-1010\left(loại\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}k-n=1\\k+n=2021\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=1011\\n=1010\end{matrix}\right.\left(nhận\right)\)
\(\left\{{}\begin{matrix}k-n=43\\k+n=47\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=45\\n=2\end{matrix}\right.\left(nhận\right)\)
\(\left\{{}\begin{matrix}k-n=47\\k+n=43\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=45\\n=-2\left(loại\right)\end{matrix}\right.\)
Vậy \(n\in\left\{2;1010\right\}\)
Giả sử n2+2021 là SCP
\(Đặtn^2+2021=k^2\left(k\in N\right)\\ \Rightarrow n^2-k^2=-2021\\ \Rightarrow\left(n-k\right)\left(n+k\right)=-2021\)
Vì \(n,k\in N\Rightarrow\left\{{}\begin{matrix}n-k< n+k\\n-k,n+k\in Z\\n-k,n+k\inƯ\left(-2021\right)\end{matrix}\right.\)
Ta có bảng:
n-k | -43 | -47 |
n+k | 47 | 43 |
n | 2 | -2 |
Mà n∈N⇒n=2
Vậy n=2
Cho số tự nhiên An= 3n^2+6n+13(n thuộc N) tìm các số tự nhiên n lẻ sao cho An là số chính phương
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
số tự nhiên n sao cho n^2+404 là số chính phương
|
số tự nhiên n sao cho n^2 +404 là số chính phương
Số tự nhiên n sao cho n^2 +404 là số chính phương?
giúp mình nhé
n^2+404=a^2
(a-n).(a+n)=404=2.202=202.2
a-n=2;a+n=202 => a=102;n=100
(-) a-n=202;a+n=2 => a=102;n=-100 loại
Vậy n=100
làm ơn tick cho tôi! từ tối tới giờ tôi chưa được 1 tick! please!